Georgia Institute of Technology

CHEM 1310: Exam II

October 21, 2009

Select the best answer for each of the following problems. Each problem is worth 5 points with no partial credit.

1. A solution is prepared by dissolving 49.3 g of KBr in enough water to form 473 mL of solution. Calculate the mass percentage of KBr in the solution if the density is $1.12 \mathrm{~g} / \mathrm{mL}$.
A. 10.1%
B. 9.3%
C. 11.7%
D. 8.6%
E. 10.4%

Answer: B
2. Which of the following acid-base reactions will have the largest equilibrium constant?
A. $\mathrm{NH}_{3}+\mathrm{HCN} \rightleftharpoons$
B. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$
C. $\mathrm{NH}_{3}+\mathrm{HClO}_{2} \rightleftharpoons$
D. $\mathrm{NH}_{3}+\mathrm{HClO} \rightleftharpoons$
E. $\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$ (Acetic Acid) \rightleftharpoons

Answer: C
3. Which of the following has the greatest concentration of hydroxide ions?
A. Apple Juice ($\mathrm{pH}=3.1$)
B. Orange Juice $(\mathrm{pH}=2.5)$
C. Coca-Cola ($\mathrm{pH}=3.8$)
D. Lemon Juice $(\mathrm{pH}=2.1)$
E. $\operatorname{Milk}(\mathrm{pH}=6.4)$

Answer: E
4. What is the conjugate acid of $\mathrm{HPO}_{4}{ }^{2-}$?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{PO}_{4}{ }^{3-}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
E. OH^{-}

Answer: D
5. Determine the volume of SO_{2} (at STP) formed from the complete reaction of 96.7 grams of $\mathrm{FeS}_{2}($ molecular weight $=119.99 \mathrm{~g} / \mathrm{mol})$ and $55.0 \mathrm{~L}^{2}$ of $\mathrm{O}_{2}(398 \mathrm{~K}, 1.20 \mathrm{~atm})$.
$4 \mathrm{FeS}_{2}(\mathrm{~g})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{SO}_{2}(\mathrm{~g})$
A. 27.6 L
B. 36.1 L
C. 18.1 L
D. 32.9 L
E. 45.3 L

Answer: D
$4 \mathrm{FeS}_{2}(\mathrm{~g})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{SO}_{2}(\mathrm{~g})$
$\mathrm{FeS}_{2}:(96.7 \mathrm{~g})[4(120 \mathrm{~g} / \mathrm{mol})]^{-1}=0.20 \mathrm{~mol}$
$\mathrm{O}_{2}:(55.0 \mathrm{~L})(1.2 \mathrm{~atm})[11(0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mole}-\mathrm{K})(398 \mathrm{~K})]^{-1}=0.18 \mathrm{~mol}$
O_{2} is the limiting reagent.
Use $\mathrm{V}=\mathrm{nRT} / \mathrm{P}=8(0.18 \mathrm{~mol})(0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mole}-\mathrm{K})(273 \mathrm{~K})(1.0 \mathrm{~atm})^{-1}=32.3 \mathrm{~L}$
6. Consider the following reaction and its equilibrium constant:

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \quad \mathrm{K}=0.33
$$

A mixture of the four gases has the following partial pressures:
$\mathrm{P}\left(\mathrm{SO}_{2}\right)=0.39 \mathrm{~atm}$
$\mathrm{P}\left(\mathrm{NO}_{2}\right)=0.14 \mathrm{~atm}$
$\mathrm{P}\left(\mathrm{SO}_{3}\right)=0.11 \mathrm{~atm}$
$P(N O)=0.14 \mathrm{~atm}$

Which of the following statements is TRUE concerning this system?
A. The equilibrium constant will decrease.
B. The reaction will proceed in the direction of the reactants.
C. The reaction will proceed in the direction of the products.
D. The reaction quotient will decrease.
E. The system is at equilibrium.

Answer: C
7. What is the strongest type of intermolecular force present in $\mathrm{CHF}_{3}(1)$?
A. Ion-dipole
B. Hydrogen bonding
C. Dipole-dipole
D. Dispersion
E. Ionic

This question will not be scored
8. Place the following substances in order of increasing boiling point.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
Ar
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
A. $\mathrm{Ar}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{Ar}<\mathrm{CH}_{3} \mathrm{OCH}_{3}$
C. $\mathrm{Ar}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{Ar}$
E. $\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{Ar}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Answer: A

9. Consider the following reaction at equilibrium. What effect will reducing the volume of the reaction mixture have on the system?
$\mathrm{CuS}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{Cu}(\mathrm{s})+\mathrm{SO}_{2}(\mathrm{~g})$
A. No effect will be observed
B. The reaction will shift to the left (reactant favored)
C. The reaction will shift to the right (product favored)
D. The equilibrium constant will increase
E. The reaction quotient will decrease

Answer: A
10. What is the pH of pure water at $40^{\circ} \mathrm{C}$ if the K_{w} at this temperature is 2.92×10^{-14} ?
A. 6.77
B. 0.47
C. 8.45
D. 7.23
E. 7.00

Answer: A

11. Place the following substances in order of decreasing vapor pressure at a given temperature.
$\mathrm{PF}_{5} \quad \mathrm{BrF}_{3} \quad \mathrm{CF}_{4}$
A. $\mathrm{CF}_{4}>\mathrm{BrF}_{3}>\mathrm{PF}_{5}$
B. $\mathrm{PF}_{5}>\mathrm{BrF}_{3}>\mathrm{CF}_{4}$
C. $\mathrm{BrF}_{3}>\mathrm{CF}_{4}>\mathrm{PF}_{5}$
D. $\mathrm{CF}_{4}>\mathrm{PF}_{5}>\mathrm{BrF}_{3}$
E. $\mathrm{BrF}_{3}>\mathrm{PF}_{5}>\mathrm{CF}_{4}$

This question will not be scored.
12. Which of the following will cause the volume of an ideal gas to triple?
A. Lowering the absolute temperature by a factor of 3 while increasing the pressure by a factor of 3 .
B. Raising the absolute temperature by a factor of 3 while increasing the pressure by a factor of 3 .
C. Lowering the absolute temperature by a factor of 3 at constant pressure.
D. Raising the temperature from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ at constant pressure.
E. Lowering the pressure by a factor of three while the temperature stays constant.

Answer: E
13. Which of the following statements is TRUE?
A. The equilibrium constant for the forward reaction is equal to the equilibrium constant for the reverse reaction.
B. Equilibrium indicates that the amount of reactants and products are equal.
C. When the reaction quotient (Q) is larger than the equilibrium constant, the reaction will be proceed in the forward direction.
D. The forward and reverse reactions stop at equilibrium.
E. The reaction shows no macroscopic evidence of change at equilibrium.
14. Determine the pH of a 0.15 M solution of benzoic acid $\left(\mathrm{K}_{\mathrm{a}}=6.5 \times 10^{-5}\right)$.
A. 1.6
B. 2.5
C. 0.8
D. 3.2
E. 4.1

Answer: B
15. Determine the pH of a 50 mL 0.116 M NaOH solution after dilution by the addition of 100 mL of water.
A. 13.1
B. 13.4
C. 12.6
D. 11.4
E. 12.9

Answer: C
16. The graph shows four gases (A-D), all that the same temperature and pressure. Which gas that has the lowest density?

A. A
B. B
C. C
D. D
E. All of the gases have the same density.

Answer: A
17. Identify the aqueous solution with the highest boiling point. All the solutes are nonvolatile. Assume ideal behavior.
A. $0.100 \mathrm{~m} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad$ (glucose is a non-dissociating molecule)
B. 0.100 m NaCl
C. $0.100 \mathrm{~m} \mathrm{AlCl}_{3}$
D. $0.100 \mathrm{~m} \mathrm{MgCl}_{2}$
E. All of the solutions above (A-D) have the same boiling point.

Answer: C
18. Determine the vapor pressure of a solution at $55^{\circ} \mathrm{C}$ that contains $105 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (Molecular Weight $=180 \mathrm{~g} / \mathrm{mol})$ that has been added to 375 mL of water. The vapor pressure of pure water at $55^{\circ} \mathrm{C}$ is 118.1 torr.
A. 0 torr
B. 80 torr
C. 115 torr
D. 93 torr
E. 40 torr
19. What is the volume of 0.780 moles of Helium (g) at STP?
A. 43.7 L
B. 17.5 L
C. 70.0 L
D. 15.6 L
E. 22.4 L

Answer: B
20. The equilibrium constant is given for one of the reactions below. Determine the value of the other equilibrium constant.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})$
$\mathrm{K}_{1}=3.8 \times 10^{4}$
$2 \mathrm{HBr}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$
$\mathrm{K}_{2}=$?
A. 6.4×10^{-4}
B. 5.3×10^{-5}
C. 1.6×10^{3}
D. 1.9×10^{4}
E. 2.6×10^{-5}

Answer: E
21. Identify your version (look at the bottom of the page). (No points awarded, but required)
A. Version A
B. Version B
C. Version C
D. Version D

