Please read the following before proceeding

- 1. Materials: Turn off cell phones and wireless PDA devices. Clear all papers and books from your desk. You will need a pencil, a calculator and a Scantron answer form.
- 2. This exam is multiple-choice. It is highly recommended that you record your work on the actual exam (this document). There is no partial credit.
- 3. The exam will be Scantron scored. On the Scantron card, please make sure that you **bubble**in your GTid number. In the space provided, write your Name. Write the *Color* of your exam in the Subject section and bubble-in the letter for the Test Form. Write your section number in the Hour/Date section. See sample below.
- 4. Show your Buzz Card when you turn in your completed exam and Scantron card.
- 5. You must work alone. Give or take no assistance from other students. Recall the Georgia Tech Honor Code. "I pledge my honor that I have not violated the Honor Code during this examination." Signed_

Exam 2-white

H 1.008			KI()])	I (, /		151.)] (1. IN 1				He 4.003
Li	⁴ Be											⁵ B	⁶ C	⁷ N	⁸ O	9 F	10 Ne
6.941	9.012											10.811	12.011	14.007	15.999	18.999	20.18
Na	¹² Mg											¹³ Al	¹⁴ Si	15 P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
22.989	24.305							1				26.982	28.0856	30.974	32.066	35.453	39.94
¹⁹ K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	.30 Zn	Ga	Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
39.098	40.078	44.955	47.867	50.941	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.467	87.62	88.905	91.224	92.906	95.94	98	101.07	102.905	106.42	107.868	112.411	114.818	118:710	121.760	127.60	126.904	131.2
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	to	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	R
32.905	137.327	71	178.49	180.947	183.84	186.207	190.23	192.217	195.078	196.967	200.59	204.383	207.2	208.980	209	210	222
37	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	to	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
223	226	103	261	262	263	264	265	268	269	272	277	ļ					
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce 140.116	Pr 140.908	Nd 144.24	Pm	Sm 150.36	Eu 151.964	Gd 157.25	Tb 158.925	Dy 162.50	Ho 164.930	Er 167.26	Tm 168.934	Yb 173.04	Lu 174.967	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	T	Nn	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Chem. 1310 Fall 2005

Name Section Number

- 1. Things that happen spontaneously
- a. increase the entropy of the universe. (<-hint this one is right)
- b. decrease the energy of the universe. (<-hint no, this one is wrong)

Answer: a

- 2. Which of the following are generally true?
- a. Intermolecular forces are stronger than covalent bonds.
- b. Intermolecular forces are more directional than covalent bonds.
- c. Any molecule in a liquid experiences intermolecular forces.
- d. All of these are valid generalizations.
- e. None of these are valid generalizations.

Answer: c

3. In liquid mixtures of hexanol (CH₃CH₂CH₂CH₂CH₂CH₂CH₂OH) and methanol (CH₄OH), attractive interactions between molecules arise from

- a. ion-ion interactions.
- b. ion-dipole interactions.
- c. dipole-dipole interactions.
- d. dispersive interactions.
- e. both c & d are correct.

Answer: e

- 4. The water vapor pressure of a dilute solution of NaCl(aq) is
- a. less than that of a more concentrated NaCl(aq) solution.
- b. greater than that of a more concentrated NaCl(aq) solution.
- c. equal to that of a more concentrated solution of NaCl(aq).
- d. equal to that of the pure NaCl(s).
- e. none of these.

Answer: b

- 5. As the equilibrium state of a chemical reaction is approached,
- a. the rate of the forward reaction approaches zero.
- b. the rate of the reverse reaction approaches zero.
- c. the rates of the forward and backward reactions approach each other.
- d. both a & b are correct.
- e. none of these.
- Answer: c

For the next three questions consider the chemical reaction, at 250°C, at fixed volume.

 $PCl_3(g) + Cl_2(g) \iff PCl_5(g).$

6. The equilibrium expression for the reaction is: K =

Name	Section Number						
$P_{PCl_3}P_{Cl_2}$							

a. $\frac{P_{PCl_3}P_{Cl_2}}{P_{PCl_5}}$ b. $\frac{P_{PCl_5}}{P_{PCl_3}P_{Cl_2}}$ c $\frac{P_{PCl_5}}{P_{Cl_2}}$ d. $P_{PCl_3}P_{Cl_2}$

e. none of these.

Answer: b

7. The equilibrium partial pressures are $P_{PCI3} = 0.400$ atm, $P_{CI2} = 0.500$ atm, and $P_{PCI5} = 0.0930$ atm. Therefore the equilibrium constant K for the reaction at 250°C

- a. 0.12
- b. 0.47
- c. 2.2
- d. 8.6
- e. none of these.

Answer: b

8. If $Cl_2(g)$ is injected into this system at equilibrium, the partial pressure of PCl_3 will

- a. increase.
- b. decrease.
- c. not change.
- d. cannot be predicted

Answer: b

- 9. The conjugate base of HPO_4^{2-} is
- a. H_3PO_4
- b. $H_2PO_4^-$
- c. PO₄³⁻
- d. PO_3^{-}
- e. none of these.

Answer: c

10. For an aqueous solution at 25°C, if $[H^+] = 0.050$ M, then $[OH^-] =$

- a. $2.0 \ge 10^{-12} \text{ M}$
- b. $1.0 \ge 10^{-7} M$
- c. $2.0 \ge 10^{-6} M$
- d. $5.0 \ge 10^{-2} M$

Name ______ Section Number _____

e. none of these. Answer: e

11. What is the pH of a 0.001 M HCl(aq) solution at 25°C? a. 10⁻³ b. 10⁻⁴ c. 4 d. 3 e. None of these. Answer: d

12. What is the pH of a 2.6 x 10^{-11} M NaOH(aq) solution at 25°C? a. 2.8 b. 3.4 c. 7.0 d. 10.6 e. None of these.

Answer: c

The next three questions concern the weak base hydroxylamine (HONH₂), for which $K_{h} = 1.1 \text{ x}$ 10⁻⁸ at 25°C.

13. What is the pH of a 0.60 M aqueous hydroxylamine solution at 25°C?

- a. 6.9
- b. 7.9
- c. 8.9
- d. 9.9
- e. None of these.

Answer: d

14. At which pH would hydroxylamine be the best buffer?

- a. 6.0
- b. 7.4
- c. 8.5
- d. 9.9

e. None of these.

Answer: a

15. At the pH specified in the previous question, what is $-\log_{10} \frac{[HONH_3^+]}{[HONH_2]}$?

- a. 10⁻⁷
- b. 7
- c. 1
- d. 0
- e. None of these.

Exam 2-white

Name ______ Section Number _____

Answer: d

16. Which of the following K_a values belongs to the strongest acid?

- a. 6.6 x 10⁻⁴
- b. 4.6 x 10⁻⁴
- c. 9.1 x 10⁻⁸
- d. 3.0×10^{-8}
- e. Cannot be determined from the given information.

Answer: a

17. If an acid has $Ka = 4.93 \times 10^{-10}$, then Kb for the conjugate base is

- a. 5.17×10^{-10}
- b. 9.95 x 10⁻⁸
- c. 2.03×10^{-4}
- d. 5.17 x 10⁻⁴
- e. none of these.

Answer: e

18. For AgCl(s), $K_{sp} = 1.6 \times 10^{-10}$. As the pH is lowered, the solubility of AgCl in water will a. increase.

- b. decrease.
- c. remain unchanged.
- d. This cannot be predicted.

Answer: c

For the next question, consider cadmium hydroxide [Cd(OH)₂], for which the solubility in water at 25°C is 1.7×10^{-5} M.

19. The solubility product expression for the dissolution of $Cd(OH)_2(s)$ in water is K_{sp} = a. $[Cd^{2+}][OH^{-}]^{2}/[Cd(OH)_{2}]$

- b. $[Cd^{2+}][2OH^{-}]^2$
- c. $[Cd^{2+}][2OH^{-}]$
- d. $[Cd^{2+}][OH^{-}]^{2}$
- e. None of these.
- Answer: d

For the next question, consider the following solubility product data for various chromates at 25°C:

 $K_{sp} Ag_2 CrO_4 = 1.9 x 10^{-12}$ K_{sp}^{T} BaCrO₄ = 2.1 x10⁻¹⁰ $K_{sp} PbCrO_4 = 1.8 x 10^{-14}$

20. The chromate that is least soluble in water at 25°C is a. Ag_2CrO_4

Name ______ Section Number _____

- b. BaCrO₄
- c. PbCrO₄
- d. impossible to determine.
- e. all are equivalent.

Answer: c

21. The value of the equilibrium constant for a chemical reaction with two gas phase reactants is dependent upon

- a. temperature.
- b. initial amounts of reactants present.
- c. total pressure.
- d. all of these.
- e. none of these.

Answer: a