\qquad Section Number \qquad
Please read the following before proceeding

1. Materials: Turn off cell phones and wireless PDA devices. Clear all papers and books from your desk. You will need a pencil, a calculator and a Scantron answer form.
2. This exam is multiple-choice. It is highly recommended that you record your work on the actual exam (this document). There is no partial credit.
3. The exam will be Scantron scored. On the Scantron card, please make sure that you bubblein your GTid number. In the space provided, write your Name. Write the Color of your exam in the Subject section and bubble-in the letter for the Test Form. Write your section number in the Hour/Date section. See sample below.
4. Show your Buzz Card when you turn in your completed exam and Scantron card.
5. You must work alone. Give or take no assistance from other students. Recall the Georgia Tech Honor Code. "I pledge my honor that I have not violated the Honor Code during this examination."
Signed \qquad

Name \qquad Section Number \qquad

H																	${ }_{4}^{2} \mathrm{He}$
$\underset{6.941}{\mathbf{L i}}$	$\stackrel{4}{\text { Be }}$											S ${ }_{\text {B }} \mathbf{B}$	${ }_{12}^{6} \mathbf{C}$	${ }_{14} \mathbf{N}$	${ }_{15.999}$	${ }_{18}^{9} \mathbf{F}$	$\left.\right\|_{\text {Ne }} ^{10} \mathrm{Ne}$
$\begin{gathered} \mathrm{Na} \\ 22.989 \end{gathered}$	$\left\lvert\, \begin{aligned} & \mathbf{M g} \mathbf{3} \\ & \hline \end{aligned}\right.$											$\left\lvert\, \begin{gathered}\text { Al } \\ \text { Al } \\ 26.982\end{gathered}\right.$	${ }^{14} \mathrm{Si}$ 288.085	(1)1 \mathbf{P} 30.974	${ }_{32.06}^{16}$	${ }_{35.453}^{17}$	$\underset{39.948}{\mathbf{A r}_{3}}$
19	$\frac{20}{\mathbf{C a}}$	Sc	$\mathbf{T i}^{22}$	$\sqrt{23}$	${ }^{24} \mathrm{Cr}$	$\mathrm{L}^{2} \mathrm{Mn}$	${ }_{26}^{26}$	${ }^{27} \mathrm{Co}$	${ }^{28} \mathrm{Ni}$	$\int^{29} \mathrm{Cu}$	${ }^{30} \mathbf{Z n}$	${ }^{13}$	${ }^{32} \mathbf{G e}$	${ }^{33}$ As	${ }^{34} \mathrm{Se}$	${ }^{35} \mathrm{Br}$	${ }^{36} \mathbf{K r}$
39.098	40.078	44.955	47.867	50.94	51.96	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	${ }^{39}$	${ }^{40}$	${ }^{41}$	${ }^{42}$	143	${ }^{44}$	45	${ }^{46}$	47	Cd	In	Sn	Sb	Te		
$\mathbf{R b}$	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	$\mathbf{R h}$	Pd	Ag	Cd	In	Sn	$\mathbf{S b}$	Te	I	Xe
85.467	87.62	88.905	91.224	92.906	95.94	98	101.07	102.905	1106.42	107.868	1112.41	114.818	1118.710	121.760	27.60	126.90	131.29
${ }^{55}$	56	57	72	73	74		76	I	P	A	H						
Cs	Ba	to	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	$\mathbf{R n}$
1132.95	1137.327	7	1788.49	180.947	[183.84	\|186.207	190.23	192.217	7195.078	8 :196.967	7200.59	204.383	207.2	[208.980]	209	210	222
87	88	${ }^{89}$	104	105	${ }^{106}$	${ }^{107}$	108	109	$1{ }^{10}$	${ }^{11}$	112						
Fr	Ra	10	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uula	Uub						
223	226	103	261	262	263	264	265				277						

${ }_{138} \mathbf{L a}$	Ce 140.116	$\mathbf{P r}$ 140.908	Nd	Pm	Sm	$\mathbf{E u}$	Gd	$\mathbf{T b}$	${ }_{162.50}^{\mathbf{D y}}$	$\mathbf{H o}_{6}$	$\mathbf{E r}_{167.26}$	$\mathbf{T m}_{168.934}$	$\mathbf{Y b}$	$\mathrm{Lu}_{174.967}$
89	90	91	92	3	94	95	96	97	98	99	100	01	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227	232.038		38.029		244			247	251	25				

Name \qquad Section Number \qquad

1. Things that happen spontaneously
a. increase the entropy of the universe. (<-hint this one is right)
b. decrease the energy of the universe. (<-hint no, this one is wrong)

Answer: a
2. Which of the following are generally true?
a. Intermolecular forces are stronger than covalent bonds.
b. Intermolecular forces are more directional than covalent bonds.
c. Any molecule in a liquid experiences intermolecular forces.
d. All of these are valid generalizations.
e. None of these are valid generalizations.

Answer: c
3. In liquid mixtures of hexanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ and methanol $\left(\mathrm{CH}_{4} \mathrm{OH}\right)$, attractive interactions between molecules arise from
a. ion-ion interactions.
b. ion-dipole interactions.
c. dipole-dipole interactions.
d. dispersive interactions.
e. both c \& d are correct.

Answer: e
4. The water vapor pressure of a dilute solution of $\mathrm{NaCl}(\mathrm{aq})$ is
a. less than that of a more concentrated $\mathrm{NaCl}(\mathrm{aq})$ solution.
b. greater than that of a more concentrated $\mathrm{NaCl}(\mathrm{aq})$ solution.
c. equal to that of a more concentrated solution of $\mathrm{NaCl}(\mathrm{aq})$.
d. equal to that of the pure $\mathrm{NaCl}(\mathrm{s})$.
e. none of these.

Answer: b
5. As the equilibrium state of a chemical reaction is approached,
a. the rate of the forward reaction approaches zero.
b. the rate of the reverse reaction approaches zero.
c. the rates of the forward and backward reactions approach each other.
d. both $\mathrm{a} \& \mathrm{~b}$ are correct.
e. none of these.

Answer: c
For the next three questions consider the chemical reaction, at $250^{\circ} \mathrm{C}$, at fixed volume.
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})<=>\mathrm{PCl}_{5}(\mathrm{~g})$.
6. The equilibrium expression for the reaction is: $\mathrm{K}=$

Name \qquad Section Number \qquad
a. $\frac{P_{P C l 3} P_{C l 2}}{P_{P C l 5}}$
b. $\frac{P_{P C l 5}}{P_{P C l 3} P_{C l 2}}$
c $\frac{P_{P C l 5}}{P_{C l 2}}$
d. $P_{P C l 3} P_{C l 2}$
e. none of these.

Answer: b
7. The equilibrium partial pressures are $\mathrm{P}_{\mathrm{PC} 13}=0.400 \mathrm{~atm}, \mathrm{P}_{\mathrm{C} 12}=0.500 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{PC} 15}=0.0930$ atm. Therefore the equilibrium constant K for the reaction at $250^{\circ} \mathrm{C}$
a. 0.12
b. 0.47
c. 2.2
d. 8.6
e. none of these.

Answer: b
8. If $\mathrm{Cl}_{2}(\mathrm{~g})$ is injected into this system at equilibrium, the partial pressure of PCl_{3} will
a. increase.
b. decrease.
c. not change.
d. cannot be predicted

Answer: b
9. The conjugate base of HPO_{4}^{2-} is
a. $\mathrm{H}_{3} \mathrm{PO}_{4}$
b. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
c. PO_{4}^{3-}
d. PO_{3}^{-}
e. none of these.

Answer: c
10. For an aqueous solution at $25^{\circ} \mathrm{C}$, if $\left[\mathrm{H}^{+}\right]=0.050 \mathrm{M}$, then $\left[\mathrm{OH}^{-}\right]=$
a. $2.0 \times 10^{-12} \mathrm{M}$
b. $1.0 \times 10^{-7} \mathrm{M}$
c. $2.0 \times 10^{-6} \mathrm{M}$
d. $5.0 \times 10^{-2} \mathrm{M}$

Name \qquad Section Number \qquad
e. none of these.

Answer: e
11. What is the pH of a $0.001 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ solution at $25^{\circ} \mathrm{C}$?
a. 10^{-3}
b. 10^{-4}
c. 4
d. 3
e. None of these.

Answer: d
12. What is the pH of a $2.6 \times 10^{-11} \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution at $25^{\circ} \mathrm{C}$?
a. 2.8
b. 3.4
c. 7.0
d. 10.6
e. None of these.

Answer: c
The next three questions concern the weak base hydroxylamine $\left(\mathrm{HONH}_{2}\right)$, for which $\mathrm{K}_{\mathrm{b}}=1.1 \mathrm{x}$ 10^{-8} at $25^{\circ} \mathrm{C}$.
13. What is the pH of a 0.60 M aqueous hydroxylamine solution at $25^{\circ} \mathrm{C}$?
a. 6.9
b. 7.9
c. 8.9
d. 9.9
e. None of these.

Answer: d
14. At which pH would hydroxylamine be the best buffer?
a. 6.0
b. 7.4
c. 8.5
d. 9.9
e. None of these.

Answer: a
15. At the pH specified in the previous question, what is $-\log _{10} \frac{\left[\mathrm{HONH}_{3}^{+}\right]}{\left[\mathrm{HONH}_{2}\right]}$?
a. 10^{-7}
b. 7
c. 1
d. 0
e. None of these.

Name \qquad Section Number \qquad
Answer: d
16. Which of the following K_{a} values belongs to the strongest acid?
a. 6.6×10^{-4}
b. 4.6×10^{-4}
c. 9.1×10^{-8}
d. 3.0×10^{-8}
e. Cannot be determined from the given information.

Answer: a

17. If an acid has $\mathrm{Ka}=4.93 \times 10^{-10}$, then Kb for the conjugate base is
a. 5.17×10^{-10}
b. 9.95×10^{-8}
c. 2.03×10^{-4}
d. 5.17×10^{-4}
e. none of these.

Answer: e
18. For $\mathrm{AgCl}(s), K_{\mathrm{sp}}=1.6 \times 10^{-10}$. As the pH is lowered, the solubility of AgCl in water will
a. increase.
b. decrease.
c. remain unchanged.
d. This cannot be predicted.

Answer: c
For the next question, consider cadmium hydroxide $\left[\mathrm{Cd}(\mathrm{OH})_{2}\right]$, for which the solubility in water at $25^{\circ} \mathrm{C}$ is $1.7 \times 10^{-5} \mathrm{M}$.
19. The solubility product expression for the dissolution of $\mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})$ in water is $\mathrm{K}_{\text {sp }}=$
a. $\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} /\left[\mathrm{Cd}(\mathrm{OH})_{2}\right]$
b. $\left[\mathrm{Cd}^{2+}\right]\left[2 \mathrm{OH}^{-}\right]^{2}$
c. $\left[\mathrm{Cd}^{2+}\right]\left[2 \mathrm{OH}^{-}\right]$
d. $\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
e. None of these.

Answer: d
For the next question, consider the following solubility product data for various chromates at $25^{\circ} \mathrm{C}$:
$\mathrm{K}_{\text {sp }} \mathrm{Ag}_{2} \mathrm{CrO}_{4}=1.9 \times 10^{-12}$
$\mathrm{K}_{\text {sp }} \mathrm{BaCrO}_{4}=2.1 \times 10^{-10}$
$\mathrm{K}_{\text {sp }} \mathrm{PbCrO}_{4}=1.8 \times 10^{-14}$
20. The chromate that is least soluble in water at $25^{\circ} \mathrm{C}$ is
a. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$

Name \qquad Section Number \qquad
b. BaCrO_{4}
c. PbCrO_{4}
d. impossible to determine.
e. all are equivalent.

Answer: c
21. The value of the equilibrium constant for a chemical reaction with two gas phase reactants is dependent upon
a. temperature.
b. initial amounts of reactants present.
c. total pressure.
d. all of these.
e. none of these.

Answer: a

