Sample Questions for Exam 2. Chem 1310 A/B, Dr. Williams, Revised 10/27/2005
--------chapter 6----------------

1. Which of the following molecules is nonpolar?
a. Br_{2}
b. BrCl
c. HBr
e. CO_{2}
e. all of these

Answer: a
2. Which of the following generalizations can be made about intermolecular forces?
a. Intermolecular forces are generally stronger than covalent bonds.
b. Intermolecular forces are less directional than covalent bonds.
c. Intermolecular forces operate at shorter ranges than covalent bonds.
d. All of these are valid generalizations.
e. None of these is a valid generalization.

Answer: b, revised

3. In the mixing of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ and water, an important role is played by attractive
a. ion-ion interactions.
b. ion-dipole interactions.
c. dipole-dipole.
d. dispersion interactions.
e. c \& d.

Answer: e
4. In which of the following liquids are intermolecular interactions due to dispersion forces only?
a. Ne
b. N_{2}
c. Cl_{2}
d. all of these
e. none of these

Answer: d
5. In which of the following liquids do hydrogen bonding contribute significantly to the attractive interactions between molecules?
a. Ne
b. N_{2}
c. Cl_{2}
d. all of these
e. none of these

Answer: e
6. In which of the following liquids do hydrogen bonding contribute significantly to the attractive interactions between molecules?
a. $\mathrm{H}_{2} \mathrm{O}$
b. HF
c. NH_{3}
d. all of these
e. none of these

Answer: d
7. As the temperature of $\mathrm{H}_{2} \mathrm{O}$ (s) is reduced from $-30^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$, its vapor pressure must
a. increase.
b. decrease.
c. remain constant.
d. This question has no meaning, because solid water has no vapor pressure.

Answer: b
8. The vapor pressure of a dilute solution of a nonvolatile solute is
a. less than that of the pure solvent.
b. greater than that of the pure solvent.
c. equal to that of the pure solvent.
d. equal to that of the pure solute.
e. none of these

Answer: a
-------chapter 7----------------
9. As the equilibrium state of a chemical reaction is approached,
a. the rate of the forward reaction approaches zero.
b. the rate of the backward reaction approaches zero.
c. the rates of the forward and backward reactions approach the same value.
d. Both a and b are correct.
e. none of these

Answer: c
10. The value of the equilibrium constant for a chemical reaction with two gas phase reactants is dependent upon
a. initial amounts of reactants.
b. final amounts of reactants.
c. total pressure.
d. all of these
e. none of these

Answer: e, revised
For the next two questions consider the chemical reaction,
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})<=>\mathrm{PCl}_{5}(\mathrm{~g})$.
11. If the equilibrium is rewritten as $2 \mathrm{PCl} 3(\mathrm{~g})+2 \mathrm{Cl} 2(\mathrm{~g})<=>2 \mathrm{PCl} 5(\mathrm{~g})$, the equilibrium constant would change from its original value K to
a. K/2
b. 2 K
c. K^{2}
d. $\mathrm{K}^{1 / 2}$
e. none of these

Answer: c
12. If at equilibrium a nonreacting gas is added without changing the volume or temperature, the response to the stress will be
a. a shift to the right.
b. a shift to the left.
c. no change.
d. unpredictable.
e. none of these

Answer: c
For the next three questions, consider the reaction,
$\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{g})<=>\mathrm{Sn}(\mathrm{s})+2 \mathrm{CO}_{2}(\mathrm{~g})$,
$\mathrm{T}=500^{\circ} \mathrm{C}$, equilibrium constant $\mathrm{K}=0.025$.
13. At equilibrium, if the partial pressure of CO_{2} is 0.050 atm , then the partial pressure of CO must be
a. 0.100 atm
b. 0.316 atm
c. 1.41 atm
d. 2.00 atm
e. none of these

Answer: b
14. The reaction is initiated by adding $\mathrm{CO}(\mathrm{g})$ at a pressure of 0.500 atm to a rigid vessel containing excess $\mathrm{SnO}_{2}(\mathrm{~s})$. At equilibrium, the partial pressure of $\mathrm{CO}_{2}(\mathrm{~g})$ will be a. 0.00625 atm
b. 0.0125 atm
c. 0.0790 atm
d. 0.112 atm
e. none of these

Answer: e
$\mathrm{K}=\left(\mathrm{P}_{\mathrm{CO} 2}\right)^{2} /\left(\mathrm{P}_{\mathrm{CO}}\right)^{2}$
From ICE, K $0.025=(2 \mathrm{y})^{2} /(0.5-2 \mathrm{y})^{2}=(\operatorname{aprox})(2 \mathrm{y})^{2} /(0.5)^{2}=>\mathrm{y}=3.9 \times 10^{-2}$
15. With the system at equilibrium, if the amount of $\mathrm{Sn}(\mathrm{s})$ is doubled, the partial pressure of $\mathrm{CO}(\mathrm{g})$ will
a. increase.
b. decrease.
c. remain unchanged.
d. change unpredictably.
e. none of these

Answer: c
-------chapter 8----------------
16. The conjugate base of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is
b. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
a. HPO_{4}^{2-}
c. PO_{4}^{3-}
d. PO_{3}^{-}
e. none of these

Answer: b, revised
17. For an aqueous solution at $25^{\circ} \mathrm{C}$, if $\left[\mathrm{OH}^{-}\right]=6.25 \times 10^{-9} \mathrm{M}$, then $\left[\mathrm{H}^{+}\right]=$
a. $6.25 \times 10^{-9} \mathrm{M}$
b. $1.0 \times 10^{-7} \mathrm{M}$
c. $1.6 \times 10^{-6} \mathrm{M}$
d. $7.9 \times 10^{-5} \mathrm{M}$
e. none of these

Answer: c
18. For a 2.3 M solution of the strong acid, nitric acid, at $25^{\circ} \mathrm{C}$, the calculated pH is
a. -0.83
b. -0.36
c. 0.00
d. 0.36
e. none of these

Answer: b
19. What is the concentration of H^{+}in an aqueous solution with a pH of 9.25 ?
a. $2.5 \times 10^{-10} \mathrm{M}$
b. $5.6 \times 10^{-10} \mathrm{M}$
c. $2.5 \times 10^{-9} \mathrm{M}$
d. $9.6 \times 10^{-5} \mathrm{M}$
e. none of these

Answer: b
20. What is the concentration of OH^{-}in an aqueous solution with a pH of 1.75 at $25^{\circ} \mathrm{C}$?
a. $5.6 \times 10-13 \mathrm{M}$
b. $1.8 \times 10-12 \mathrm{M}$
c. $1.8 \times 10-2 \mathrm{M}$
d. $5.6 \times 10-1 \mathrm{M}$
e. none of these

Answer: a

The next question concerns the weak base hydroxylamine $\left(\mathrm{HONH}_{2}\right)$, for which $\mathrm{Kb}=1.1$ x 10^{-8} at $25^{\circ} \mathrm{C}$.
21. What is the pH of a 0.04 M aqueous hydroxylamine solution at $25^{\circ} \mathrm{C}$?
a. 4.7×10^{-10}
b. 2.1×10^{-5}
c. 4.7
d. 9.3
e. none of these

Answer: d
22. At which pH would hydroxylamine be the best buffer?
a. 6.0
b. 7.4
c. 8.5
d. 9.9
e. none of these

Answer: a
23. Which of the following pKa values belongs to the weakest acid?
a. 3.18
b. 3.35
c. 7.04
d. 7.53
e. This cannot be determined from the given information.

Answer: d
24. Which of the following Ka values belongs to the acid with the strongest conjugate base?
a. 4.3×10^{-7}
b. 5.0×10^{-7}
c. 1.9×10^{-5}
d. 6.5×10^{-5}
e. This cannot be determined from the given information.

Answer: a
-------chapter 9----------------
Consider cadmium hydroxide $\left[\mathrm{Cd}(\mathrm{OH})_{2}\right]$, for which the solubility in water at $25^{\circ} \mathrm{C}$ is 1.7 $\mathrm{x} 10^{-5} \mathrm{M}$.
25. The value of Ksp for $\mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})$ at $25^{\circ} \mathrm{C}$ is
a. 4.9×10^{-15}
b. 2.0×10^{-14}
c. 2.9×10^{-10}
d. 1.2×10^{-9}
e. none of these

Answer: b
Ksp $=\left(1.7 \times 10^{-5}\right)\left(3.4 \times 10^{-5}\right)^{2}=2.0 \times 10^{-14}$
For the next questions, consider the following solubility product data for various chromates at $25^{\circ} \mathrm{C}$:
$\mathrm{Ksp} \mathrm{Ag}_{2} \mathrm{CrO}_{4}=1.9 \times 10^{-12}$
Ksp $\mathrm{BaCrO}_{4}=2.1 \times 10^{-10}$
$\mathrm{K} s \mathrm{PbCrO} 4=1.8 \times 10^{-14}$
26. The chromate that is most soluble in water at $25^{\circ} \mathrm{C}$ is
a. Ag 2 CrO 4
b. BaCrO 4
c. PbCrO 4
d. impossible to determine.
e. none of these

Answer: a
27. The solubility of $\mathrm{BaCrO} 4(\mathrm{~s})$ in water at $25^{\circ} \mathrm{C}$ is
a. $1.0 \times 10-10 \mathrm{M}$
b. $2.1 \times 10-10 \mathrm{M}$
c. $7.2 \times 10-6 \mathrm{M}$
d. $1.4 \times 10-5 \mathrm{M}$
e. none of these

Answer: d
28. The solubility of $\mathrm{BaCrO} 4(\mathrm{~s})$ in an aqueous solution of 0.020 M barium chloride at $25^{\circ} \mathrm{C}$ is
a. $4.2 \times 10-12 \mathrm{M}$
b. $2.1 \times 10-10 \mathrm{M}$
c. $1.0 \times 10-8 \mathrm{M}$
d. $1.0 \times 10-4 \mathrm{M}$
e. none of these

Answer: c
29. If 105 mL of $2.0 \times 10-5 \mathrm{M}$ aqueous barium chloride is combined with 105 mL of 2.0 x10-5 M aqueous sodium chromate at $25^{\circ} \mathrm{C}$, the result will be
a. a sodium chloride precipitate.
b. a BaCrO 4 precipitate.
c. a barium chloride precipitate.
d. a sodium chromate precipitate.
e. no precipitate

Answer: e
30. What solid will precipitate first if an aqueous solution of sodium chromate at $25^{\circ} \mathrm{C}$ is slowly added to an aqueous solution containing 0.0010 M lead nitrate and 0.100 M barium nitrate at $25^{\circ} \mathrm{C}$?
a. $\mathrm{NaNO} 3(\mathrm{~s})$
b. $\mathrm{Pb}(\mathrm{NO} 3) 2(\mathrm{~s})$
c. $\mathrm{BaCrO} 4(\mathrm{~s})$
d. PbCrO 4 (s)
e. none of these

Answer: d
31. When 250 mL of $0.050 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$ is combined with 250 mL of 0.010 M
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, a precipitate is observed. When the mixture comes to equilibrium at $25^{\circ} \mathrm{C}$, $\left[\mathrm{Pb}^{2+}\right]$ will be
a. $4.5 \times 10-13 \mathrm{M}$
b. $9.0 \times 10-13 \mathrm{M}$
c. $3.6 \times 10-16 \mathrm{M}$
d. $7.2 \times 10-16 \mathrm{M}$
e. none of these

Answer: b

