Exam I	Test Form C	Chem 1310	Spring 2008	9/22/2008	Dr. Williams
Print Name		Signatur	e		

This test is <u>closed</u> note/book. One 8.5 x 11 handwritten crib sheet (one sided) is permitted.

Use a #2 pencil. Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Please turn off your cell phone. Cell phones may not be used as calculators.

Write your name on every page of this exam. Complete the Scantron card as shown below. You must bubble in your ID number, write in your section number and identify your Test Form (see top of this page). Scantron errors and omissions are punishable by point deductions.

When you take the exam, bubble in the scanton form *and* circle your answers on this exam. You must hand in both the scantron and the exam.

A total of 50 minutes is allotted for the exam. There are 20 questions. Each is worth five points. Answer every question. There is no penalty for guessing.

Circle Your Section Number

A1	M 2-3PM	CoC 52
A2	M 2-3PM	CoC 53
A3	M 2-3PM	MSE 1201A
A4	M 2-3PM	MSE 1222
A5	M 2-3PM	MSE 1224
B1	M 3-4PM	CoC 52
B2	M 3-4PM	CoC 53
B3	M 3-4PM	MSE 12101A
B4	M 3-4PM	MSE 1222
B5	M 3-4PM	MSE 1224

Exam I	Te	est Form	С			Che	m 13	10	Sp	oring	2008		9/22/	2008		Dr.	Williams
Print Name Signature																	
8	GROUP 1 IA 1 1.0079	PE	RI	0 D	IC	TA	BL	ΕC) F [·]	тн	E E	LE	ME	N	T S admi/en/		18 VIIIA 2 4.0026
E 1 H GROUPNUMBERS GROUPNUMBERS IUPACRECOMMENDATION CHEMICALASSTRACT SERVICE 13 HIA 14 H/A 15 1/A 16 1/A 17 1/H 1/A 17 1/A 16								нецим									
2	3 6.941 4 9 Li B	0122 C		ATOMIC	NUMBER -	13 IIIA 5 10.811		E ATOMIC M	ASS (1)			5 10.811 B	6 12.011 C	7 14.007 N	8 15.999 O	9 18.998 F	10 20.180 Ne
	LITHIUM BERY 11 22.990 12 2	LLIUM 4.305			SYMBOL —	BORON	- ELEMEN	TNAME				80R0N	CARBON 14 28.086	NITROGEN 15 30.974	0XYGEN 16 32.065	FLUORINE 17 35.453	NEON 18 39.948
3	Na M	lg						VIIB -				AI	Si	Р	S	CI	Ar
	19 39.098 20 4	0.078 21 44.956	4 IVB 22 47.867	5 VB 23 50.942	6 VIB 24 51.995	7 VIIB 25 54.938	8 26 55.845	9 27 58.933	10 28 58.693	11 IB 29 63.546	12 IIB 30 65.39	31 69.723	32 72.64	33 74.922	SULPHUR 34 78.96	CHLORINE 35 79.904	36 83.80
4	K C	a SC	TI	V	Сг	Mn	Fe	COBALT	NICKEL	CU	Zn	Ga	GERMANIUM	ASENIC	SELENIUM	Br	KRYPTON
5	37 85.468 38	87.62 39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76 Ch	52 127.60	53 126.90	54 131.29
,	RUBIDIUM STRO	NTIUM YTTRIUM		NIGBIUM	MOLYBDENUM	TECHNETIUM	nu RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM		ANTIMONY	TELLURIUM	IODINE	XENON
6	55 132.91 56 1 Cs B	^{37.33} 57-71 a La-Lu	72 178.49 Hf	73 180.95 Ta	74 183.84 W	75 186.21 Re	76 190.23	77 192.22	78 195.08 Pt	79 196.97 Au	80 200.59 Ha	81 204.38	⁸² 207.2 Pb	83 208.98 Bi	⁸⁴ (209) PO	85 (210) At	⁸⁶ (222) Rn
	CAESIUM BAR 87 (223) 88	Lanthanide	HAFNIUM 104 (261)	TANTALUM	TUNGSTEN	RHENIUM 107 (264)	05MIUM	IRIDIUM	PLATINUM 110 (281)	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
7	FrR	a Ac-Lr	Rf	Db	Sg	Bh	IHIS	Mit	Uun	Uuu	Uub		Uuq				
	FRANCIUM RAD	IUM Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM]	UNUNQUADIUM		Copyright © 19	98-2002 Erill. (eviditi solt no
(1) Pure	Appl. Chem., 73, No. 4	, 667-683 (2001)	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
Bak sign nucl	tive atomic mass is ficant figures. For eleme ides, the value enclo	shown with five b nts have no stable ised in brackets	La	Ce	Pr	NO	1Pm PROMETHIUM	SM	EUBOPIUM	GO		Dy	HO	ERRIUM	IM	Y D	LU
Notice and the second s																	
com tabu	position, and for these a lated.	n atomic weight is 7	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258) 10.40 all	102 (259)	103 (262)
Edit	or: Aditva Varditan (adiv	ar@netSinx.com)	AG	THORIUM	PROTACTINIUM	URANIUM	IN D NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	LDIK. BERKELIUM	CALIFORNIUM	LE/S	FERMIUM	TATE OF A	NOBELIUM	JL.J.C LAWRENCIUM
<u> </u>						0		1.5	1	•		~		•			
Constants				Quantum Mechanics Stoichi					<u>10me</u>	try							
$1 \text{ mole} = 6.022 \text{ x} 10^{23} atoms$																	
$1 \text{ mala} = 6.022 \text{ w} 10^{23} \text{ malaaulaa}$				$c = \lambda v$ mass													

Constants	Quantum Mechanics	Stoichiometry
$1 \text{ mole} = 6.022 \text{ x} 10^{23} atoms$		
$1 \text{ mole} = 6.022 \text{ x} 10^{23} \text{ molecules}$	$c = \lambda v$	$Density = \frac{mass}{mass}$
$1 \text{ mole} = 6.022 \text{ x} 10^{23} \text{ ions}$	$E = mc^2$	volume
$h = 6.626 x 10^{-34} Js$	$\lambda = \frac{h}{n}$	$Molarity = M = \frac{\text{mole of solute}}{\text{L of solvent}}$
$1 \text{ J (Joule)} = 1 \text{ kg} \frac{\text{m}^2}{s^2}$	$\hat{H}\psi = E\psi$	n (number of moles) = $\frac{\text{mass}}{\text{Molar Mass}}$
$c = 3.0x10^8 m / s$	h h	$M_1 V_1 = M_2 V_2$
Mass of an Electron = $9.10939 \times 10^{-31} kg$	$\Delta x^* m \Delta v \ge \frac{1}{4\pi}$	
Mass of a Proton = $1.67 \times 10^{-27} kg$	Maximum Occupancy = $2n^2$	
Mass of a Neutron = $1.67 \times 10^{-27} kg$		
$R = 0.0821 \frac{Latm}{molK}$		
$R = 8.31 \frac{J}{molK}$		

Print Name_

Signature _

1. What is the molar mass of ethanol (C_2H_5OH)?

A) 45.07

- B) 38.90
- C) 46.07
- D) 34.17
- E) 62.07

Answer: C, Chapter 3; (2x12)+5+16+1=46g/mol

- 2. Phosphorus has the molecular formula P_4 and sulfur has the molecular formula S_8 . How many grams of phosphorus contain the same number of molecules as 6.41 g of sulfur?
 - A) 3.10 g
 - B) 3.21 g
 - C) 6.19 g
 - D) 6.41 g
 - E) none of these

Answer: A, Chapter 3

6.41g/(8x32.1g/mol) = 0.025 mol S8; (0.025mol)(4x31g/mol) = 3.1g

- 3. The atomic mass of rhenium is 186.2. Given that 37.1% of natural rhenium is rhenium-185, what is the other isotope?
 - A) $^{183}_{75}$ Re
 - B) $^{187}_{75}$ Re
 - C) $^{189}_{75}$ Re
 - D) $^{181}_{75}$ Re
 - E) $^{190}_{75}$ Re

Answer: B, Chapter 3

(0.371)(185g/mol) + (1.000-0.371)(X) = 186.2g/mol; X=186.9

- 4. A sample of iron weighing 14.2 g contains how many moles of iron atoms?
 - A) 3.93 moles
 - B) 0.254 moles
 - C) 0.0739 moles
 - D) 13.5 moles
 - E) none of these

Answer: B, Chapter 3

14.2g/55.85g/mol = 0.254 mol

Print Name_

Signature

- 5. Which of the following statements about water is false?
 - A) Its density increases when it freezes
 - B) It has a high boiling point.
 - C) It has high surface tension.
 - D) It dissolves many salts and polar molecules.
 - E) It has high heat capacity

Answer: A, Chapter 4

6. For the reaction of 5.0 g ethanol with 1.0 g oxygen, calculate the theoretical yield of carbon dioxide (CO_2).

 $C_2H_5OH + 3O_2 \rightarrow 2CO_2(g) + 3H_2O(g)$

- A) 4.7 grams of CO₂
- B) 0.90 grams of CO_2
- C) 2.3 grams of CO_2
- D) 1.4 grams of CO₂
- E) 3.1 grams of CO_2

Answer: B, Chapter 3

 C_2H_5OH : (5.0g)(46g/mol)⁻¹=0.11 mol C_2H_5OH will consume 3 (1.1 mol) = 0.33 mol O_2 Available O_2 : (1.0g)(32g/mol)⁻¹=0.031. Since 0.031< 0.33, O_2 is limiting. CO_2 : (2/3)(0.031 mol)(44g/mol)=0.94 (the 2/3 comes from the stoic coeffs)

- 7. How much water must be added to 20.0 mL of a 9.50 M sulfuric acid solution to make a 0.480 M solution?
 - A) 81.0 mL
 - B) 101 mL
 - C) 376 mL
 - D) 396 mL
 - E) none of these

Answer: C, Chapter

 $M_1V_1=M_2V_2$; (20ml)(9.5mol/L)/0.48mol/L = 396 ml; $V_{add}=396-20=376$ ml

- 8A. Which of the following statements about the hydrogen atom is false?
 - A) The electron occupies discrete energy levels.
 - B) When the primary quantum number (n) increases, light is emitted.
 - C) When light is absorbed, n must change.
 - D) Light is absorbed and emitted at discrete wavelengths
 - E) Light is absorbed and emitted at discrete energies

Answer: B, Chapter 12

Print Name

Signature _

- 8B. Which of the following statements about electromagnetic radiation (in a vacuum) is false?
 - A) The photon energy specifies the wavelength (i.e., if you know the wavelength you know the energy).
 - B) The photon frequency specifies the wavelength.
 - C) The photon energy specifies the amplitude.
 - D) The photon frequency does not specify the phase.
 - E) The wavelength emitted by an atom is determined by differences in energy levels.
- Answer: C, Chapter 12
 - 9. Which of the following statements about atomic orbitals is false?
 - A) An orbital can hold two electrons.
 - B) Orbitals do not have precise boundaries
 - C) Hydrogen has fewer orbitals than lithium.
 - D) An orbital is not an orbit.
 - E) The number of probability nodes increases with increasing n (primary quantum number)

Answer: C, Chapter 12

- 10. Which of the following frequencies corresponds to light with the longest wavelength?
 - A) $3.00 \times 10^{13} \text{ s}^{-1}$
 - B) $8.50 \times 10^{20} \text{ s}^{-1}$
 - C) $4.12 \times 10^5 \text{ s}^{-1}$
 - D) $9.12 \times 10^{12} \text{ s}^{-1}$
 - E) $3.20 \times 10^9 \text{ s}^{-1}$

Answer: C, Chapter 12, c=v λ , c=const, long wavelength (λ) indicates low frequency (v)

- 11. Which of the following combinations of quantum numbers is not allowed?
- l $m_{(l)}$ $m_{(s)}$ n A) 1 1 0 1/2B) 3 0 0 -1/21 -1 1/2C) 2 3 -2 D) 4 -1/22 E) 4 0 1/2Answer: A, Chapter 12

Print Name

Signature

12. What is the correct electron arrangement of a neutral nitrogen atom in the ground state?

Answer: A, Chapter 12

- 13. Which neutral atoms elements have the same number of valence electrons?
 - A) N, As, Bi
 - B) P, S, Cl
 - C) Ag, Cd, Ar
 - D) Na, Ca, Ba
 - E) P, Se, I

Answer: A, Chapter 12

14. Which of the following molecules has a net dipole moment?

- A) CBr₄
- B) NF₃
- C) CO₂
- D) BI_3
- E) NH_4^+

Answer: B, Chapter 13

- 15. Which bond has the smallest dipole moment?
 - A) H-F
 - B) C-N
 - C) C-O
 - D) C-C
 - E) C-F

Answer: D, Chapter 13

Print Name_

Signature _____

- 16. Which of the following statements is incorrect?
 - A) Ionic bonding results from the transfer of one or more electrons from one atom to another.
 - B) A bond dipole indicates the unequal distribution of electrons around the atoms in the bond.
 - C) The electrons in a polar bond are found nearer to the more electronegative atom.
 - D) A molecule with very polar bonds does not necessarily have a net dipole moment.
 - E) Linear molecules cannot have a net dipole moment.

Answer: É, Chapter 13

- 17. The shape of NH_4^+ is
 - A) Square Pyramidal
 - B) Tetrahedral
 - C) Truncated Octahedral
 - D) Distorted Tetrahedral
 - E) Seriously Bent

Answer: B, Chapter 13

18. Which is an incorrect resonance structure of $N_3^{-?}$

A)
$$\begin{bmatrix} \ddot{N} \\ = \ddot{N} \\ = N \\ \end{bmatrix}$$

B) $\begin{bmatrix} N \\ = N \\ = N \\ \end{bmatrix}$
C) $\begin{bmatrix} N \\ = N \\ = N \\ \end{bmatrix}$
D) $\begin{bmatrix} \ddot{N} \\ = N \\ = N \\ \end{bmatrix}$

E) all are correct Answer: A, Chapter 13

Print Name

Signature _ 19A. Which one of these structures is incorrect?

Answer: C, Chapter 13

19B. Which one of these structures is incorrect?

Answer: A, Chapter 13

- 20. This is Test Form (look at the top of the page):
 - A) A
 - B) B
 - C) C
 - D) D

answer C