\qquad
This test is closed note/book. One 8.5×11 handwritten crib sheet (one sided) is permitted.

Use a \#2 pencil. Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Please turn off your cell phone. Cell phones may not be used as calculators.
Write your name on this exam. Complete the Scantron card as shown below. You must bubble in your ID number, write in your section number and identify your Test Form (see top of this page). Scantron errors and omissions are punishable by point deductions. When you take the exam, bubble in the scanton form and circle your answers on this exam. You must hand in both the scantron and the exam.
A total of 50 minutes is allotted for the exam. There are 20 questions. Each is worth five points. Answer every question. There is no penalty for guessing.

Circle Your Section Number

A1	M 2-3PM	CoC 52
A2	M 2-3PM	CoC 53
A3	M 2-3PM	MSE 1201A
A4	M 2-3PM	MSE 1222
A5	M 2-3PM	MSE 1224
B1	M 3-4PM	CoC 52
B2	M 3-4PM	CoC 53
B3	M 3-4PM	MSE 12101A
B4	M 3-4PM	MSE 1222
B5	M 3-4PM	MSE 1224

1. The reaction for the oxidation of nitric oxide to nitrogen dioxide is

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

If 100 mL of NO reacts completely with 400 mL of O_{2} at STP, what is the partial pressure of NO_{2} in the final reaction mixture.
A) 1.00 atm
B) 0.29 atm
C) 0.25 atm
D) 0.20 atm
E) 0.33 atm

Answer: D
$\mathrm{n}_{\mathrm{NO}}($ initial $)=\mathrm{PV} / \mathrm{RT}=(1 \mathrm{~atm})(0.10 \mathrm{~L}) /\left(0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})$
$=\mathrm{NO}_{2}($ final $)=4.1 \times 10^{-3} \mathrm{~mol}$
$\mathrm{V}_{\mathrm{f}}=0.50 \mathrm{~L}$
$\left.\mathrm{P}_{\mathrm{f}}\left(\mathrm{NO}_{2}\right)=\mathrm{nRT} / \mathrm{V}_{\mathrm{f}}=\left(4.1 \times 10^{-3} \mathrm{~mol}\right)\left(0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K}) / 0.50 \mathrm{~L}\right)=0.20 \mathrm{~atm}$
2. If the equilibrium constant for the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{~g})
$$

is K_{p}, then the equilibrium constant for the reaction

$$
\mathrm{HCl}(\mathrm{~g}) \rightleftharpoons(1 / 2) \mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{Cl}_{2}(\mathrm{~g})
$$

is:
A) $\sqrt{K_{p}}$
B) $\frac{1}{K_{p}{ }^{2}}$
C) $K_{p}{ }^{2}$
D) $\frac{1}{\sqrt{K_{p}}}$

Answer: D
3. Nitric oxide, an important pollutant in air, is formed from the elements nitrogen and oxygen at high temperatures, as when gasoline burns in an automobile engine. At $2000^{\circ} \mathrm{C}, K=0.01$ for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

Predict how the system will reach equilibrium at $2000^{\circ} \mathrm{C}$ if 0.4 moles of $\mathrm{N}_{2}, 0.1$ moles of O_{2}, and 0.08 moles of NO are placed in a 1.0 -liter container.
A) The concentration of NO will decrease; the concentrations of N_{2} and O_{2} will increase.
B) More information is necessary.
C) The concentration of NO will decrease; the concentrations of N_{2} and O_{2} will remain unchanged.
D) The system will remain unchanged.
E) The concentration of NO will increase; the concentrations of N_{2} and O_{2} will
decrease.
Answer: A
$\mathrm{Q}=\mathrm{P}^{2}{ }_{\mathrm{N} O} / \mathrm{P}_{\mathrm{O} 2} \mathrm{P}_{\mathrm{N} 2}=(0.08)^{2} /(0.4)(0.2)=0.08$
$\mathrm{Q}>\mathrm{K}$, reaction will go to the left (toward reactants)
4. Four identical 1.0-L flasks contain the gases $\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{CH}_{4}$, and NH_{3}, each at $0^{\circ} \mathrm{C}$ and 0.1 atm pressure. Assume that all gases behave ideally.
Which gas has the greatest number of molecules?
A) NH_{3}
B) all the same
C) H_{2}
D) Cl_{2}
E) CH_{4}

Answer: B
5. Consider two samples of helium (1 and 2) in separate containers. $\mathrm{V}_{1}=\mathrm{V}_{2}, \mathrm{P}_{1}=\mathrm{P}_{2}, \mathrm{~T}_{1}=$ $4 \mathrm{~T}_{2}$ and both 1 and 2 behave ideally.
Calculate the ratio $\mathrm{n}_{1} / \mathrm{n}_{2}$.
A) $4: 1$
B) $2: 1$
C) $1: 1$
D) $1: 2$
E) $1: 4$

Answer: E
$\mathrm{n}_{1} \mathrm{RT}_{1}=\mathrm{n}_{2} \mathrm{RT}_{2} \quad \mathrm{n}_{1} / \mathrm{n}_{2}=\mathrm{T}_{2} / \mathrm{T}_{1}=1 / 4$
6. The value of an equilibrium constant can vary with
I. Temperature
II. The nature of the reactants and products.
III. The concentration of the reactants.
IV. The concentration of the products.
A) II, III
B) It is dependent on three of the above choices.
C) It is not dependent on any of the above choices.
D) III, IV
E) I, II

Answer: E
7. For the following reaction:

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

How can the reaction be shifted to the left?
A) increase the pressure by changing the volume
B) remove PCl_{3}
C) add more PCl_{5}
D) remove Cl_{2}
E) decrease the pressure by changing the volume

Answer: A

8. Identify attractive forces in a pure sample of $\mathrm{H}_{2} \mathrm{O}$.
A) Charge-Charge (Ionic), Hydrogen bonding, London dispersion, Dipole-induced dipole, Charge-induced dipole
B) Hydrogen bonding, London dispersion, Dipole-induced dipole
C) Hydrogen bonding, London dispersion, Dipole-induced dipole, Charge-induced dipole
D) hydrogen bonding, Dipole-induced dipole
E) London dispersion, Dipole-induced dipole, Charge-induced dipole

Answer: B
9. Identify the major attractive force in pure Cl_{2}.
A) Charge-Charge (Ionic)
B) Hydrogen bonding
C) London dispersion
D) Dipole-induced dipole
E) Charge-induced dipole

Answer: C
10. The elements of group 5A, the nitrogen family, form compounds with hydrogen listed below:

	Boiling Point
SbH_{3}	$-17^{\circ} \mathrm{C}$
AsH_{3}	$-55^{\circ} \mathrm{C}$
PH_{3}	$-87^{\circ} \mathrm{C}$
NH_{3}	$-33^{\circ} \mathrm{C}$

The first three elements illustrate a trend where the boiling point decreases as the molecular weight decreases. However, ammonia $\left(\mathrm{NH}_{3}\right)$ does not follow the trend because
A) London dispersion forces
B) dipole-dipole forces
C) charge-charge (ionic) forces
D) hydrogen bonding
E) Covalent forces

Answer: D
11. Consider the Bragg Equation. If a beam of white visible light (all wavelengths from 400 to 700 nm) is reflected from two parallel mirrors (partially transparent) exactly 400 nm apart, one might expect to see
A) Many closely spaced spots
B) The Fourier Transform of Elvis Presley
C) A few widely spaced spots
D) Rainbows
E) An irregular pattern of spots

Answer: D
12. Consider three 1.0-L flasks at STP. Flask A contains He, flask B contains O_{2}, and flask C contains N_{2}. Assume that all three gases are ideal.

In which flask do the gas particles have the lowest average kinetic energy?
A) insufficient information
B) flask C
C) All are the same
D) flask A
E) flask B

Answer: C
13. A sample of 106 g of butanetriol, a non-dissociating, non-volatile liquid with the formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3}$, is dissolved in 162 g water. What is the vapor pressure of this solution at $100^{\circ} \mathrm{C}$?
A) 684 torr
B) 760 torr
C) 76 torr
D) 23 torr
E) 738 torr

Answer: A
$\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=162 \mathrm{~g} /(18 \mathrm{~g} / \mathrm{mol})=9.0 \mathrm{~mol}$
$\mathrm{n}_{\text {butanetriol }}=106 \mathrm{~g} /(106 \mathrm{~g} / \mathrm{mole})=1.0 \mathrm{~mol}$
$\mathrm{X}_{\mathrm{H} 2 \mathrm{O}}=9 /(9+1)=0.9$
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{X}_{\mathrm{H} 2 \mathrm{O}} \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=0.9$ (760 torr) $=684$ torr
14. For the reaction:

$$
\mathrm{aA}(\mathrm{~g})+\mathrm{bB}(\mathrm{~g}) \rightleftharpoons \mathrm{cC}(\mathrm{~g})+\text { heat }
$$

with $\mathrm{a}=1, \mathrm{~b}=1$ and $\mathrm{c}=3$. An increase in total pressure (at constant Temperature).
A) increases the number of moles of A
B) decreases the number of moles of A
C) does not change the number of moles of A
D) has undetermined effect on the number of moles of A

Answer: A
15. Polyethylene is a synthetic polymer with many uses. 1.4 g of polyethylene was dissolved in benzene to a final volume of 100 mL . The osmotic pressure relative to pure benzene was found to be 1.86 torr at $25^{\circ} \mathrm{C}$. Determine the molar mass of the polyethylene.
A) $1.1 \times 10^{8} \mathrm{~g} / \mathrm{mol}$

```
B) \(1.2 \times 10^{4} \mathrm{~g} / \mathrm{mol}\)
C) \(5700 \mathrm{~g} / \mathrm{mol}\)
D) \(3.4 \times 10^{6} \mathrm{~g} / \mathrm{mol}\)
E) \(1.4 \times 10^{5} \mathrm{~g} / \mathrm{mol}\)
Answer E \(\Pi=\mathrm{MRT}=1.86\) torr/(760 torr/atm) \(=1.4 \mathrm{~g}(0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{K}-\mathrm{mol})(298 \mathrm{~K}) /[(\mathrm{MWt}\) \(\mathrm{g} / \mathrm{m})(0.10 \mathrm{~L})]\) \(.0024 \mathrm{~atm}=342 \mathrm{~atm} /(\mathrm{MWt} \mathrm{g} / \mathrm{m})\)
\(\mathrm{MWt}=1.4 \times 10^{5}\)
```

16. What is the molality of a solution of 39.6 g of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ in 442 mL of water? The density of water is $1 \mathrm{~g} / \mathrm{ml}$.
A) 89.6 m
B) 0.0350 m
C) 1.78 m
D) 1.94 m
E) 0.0338 m
answer D
17. Consider three 1 L flasks containing gases, all at the same temperature and pressure.

Flask A contains $\mathrm{CO}(\mathrm{g})$, flask B contains $\mathrm{N}_{2}(\mathrm{~g})$, and flask C contains $\mathrm{O}_{2}(\mathrm{~g})$.
Which flask contains the gas with the lowest density?
A) flask A
B) flask B
C) flask C
D) all three are the same
E) two of the flasks contain gases at the same density

Answer E
18. A cylinder is fitted with a movable piston containing an ideal gas. The pressure inside the cylinder is P_{i} and the volume is V_{i}. What is the new pressure in the system when the piston decreases the volume of the cylinder by half, at constant T ?
A) $2 V_{i} P_{i}$
B) $(1 / 4) P_{i}$
C) $P_{i}{ }^{2}$
D) $2 P_{i}$
E) $(1 / 2) P_{i}$
answer D
19. The vapor pressure of solution depends on
A) the volume of the solution
B) the temperature
C) the volume of the vapor
D) the amount of non-soluble contaminants
E) Several of the factors listed above
answer B
20. This is Test Form (look at the bottom of the page):
A) A
B) B
C) C
D) D
answer A

1 mole $=6.022 \times 10^{23}$ atoms
$h=6.626 \times 10^{-34} \mathrm{~J} s$
1 J (Joule) $=1 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
$c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Mass of an Electron $=9.10939 \times 10^{-31} \mathrm{~kg}$
Mass of a Proton $=1.67 \times 10^{-27} \mathrm{~kg}$
Mass of a Neutron $=1.67 \times 10^{-27} \mathrm{~kg}$
$R=0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{mol}-K}$
$R=8.31 \frac{\mathrm{~J}}{\mathrm{molK}}$
Vapor Pressure $\left(\mathrm{H}_{2} \mathrm{O}, 373 \mathrm{~K}\right)=760$ torr
$m=$ molality $=\frac{\mathrm{mol} \text { of solute }}{\mathrm{kg} \text { of solvent }}$
$M=$ molarity $=\frac{\mathrm{mol} \text { of solute }}{\text { volume of solution }}$
$X_{1}=$ mole fraction $=\frac{\mathrm{n}_{1}}{\mathrm{n}_{\text {total }}}$
$\Delta T_{f}=m \bullet K_{f}$
$\Delta T_{b}=m \bullet K_{b}$
$\Pi=M R T$
$P=X_{1} \bullet P^{o}$

$$
\begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
& V_{1} T_{2}=V_{2} T_{1} \\
& P V=n R T \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \text { Kelvin }={ }^{\circ} C+273.15 \\
& \left(P+a \frac{n^{2}}{V^{2}}\right)(V-n b)=n R T \\
& P_{\text {total }}=P_{1}+P_{2}+\ldots+P_{n} \\
& K E(m o l)=\frac{3}{2} R T(\text { monoatomic }) \\
& \text { KE (particle })=\frac{1}{2} m u^{2}
\end{aligned}
$$

					$\begin{array}{\|l\|l\|} \hline \text { (IIse) } \\ \text { manump } \\ \text { JO } \\ 86 \\ \hline \end{array}$					（lez）			
$\stackrel{L 96 t 21}{ }$	to ¢	128689	97291	E086t9	0529	L268	sclest	$\xrightarrow{\text { t96］} 1 \text { ct }}$	980st	（str）	trith	592060t	9 It Oti
nT	qX	$\mathrm{w}_{\text {L }}$	13	${ }^{0} \mathrm{H}$	${ }^{\wedge}$	qI	P9	ņ	uS	\mathbf{u}_{1}	PN	${ }^{1} \mathrm{~d}$	ə
IL	02	69	89	L9	99	¢9	t9	$\varepsilon 9$	z9	19	09	65	85

䈍		
$\begin{array}{cc} \mathbb{O}_{6} & \vdots \end{array}$		
夢		
萝		
F		

