\qquad
\qquad
This test is closed note/book. One 8.5×11 handwritten crib sheet (one sided) is permitted.

Use a \#2 pencil. Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Please turn off your cell phone. Cell phones may not be used as calculators.
Write your name on this exam. Complete the Scantron card as shown below. You must bubble in your ID number, write in your section number and identify your Test Form (see top of this page). Scantron errors and omissions are punishable by point deductions.
When you take the exam, bubble in the scanton form and circle your answers on this exam. You must hand in both the scantron and the exam.
A total of 50 minutes is allotted for the exam. There are 20 questions. Each is worth five points. Answer every question. There is no penalty for guessing.

Circle Your Section Number

A1	M 2-3PM	CoC 52
A2	M 2-3PM	CoC 53
A3	M 2-3PM	MSE 1201A
A4	M 2-3PM	MSE 1222
A5	M 2-3PM	MSE 1224
B1	M 3-4PM	CoC 52
B2	M 3-4PM	CoC 53
B3	M 3-4PM	MSE 12101A
B4	M 3-4PM	MSE 1222
B5	M 3-4PM	MSE 1224

\qquad Signature \qquad

1. You are given a solution of the weak base Novocain, Nvc. The pH of the solution is 11.0 . You add the chloride salt of the conjugate acid of Novocain, $\mathrm{NvcH}^{+} \mathrm{Cl}^{-}$. Which statement is true?
A) The pH and the pOH both increase.
B) The pH and the pOH both decrease.
C) The pH and the pOH remain unchanged.
D) The pH increases and pOH decreases.
E) The pH decreases and the pOH increases.

Answer: E
Chapter 7
2. Calculate $\left[\mathrm{H}^{+}\right]$in a solution that is 0.24 M in NaF and 0.60 M in $\mathrm{HF}\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$.
A) 0.60 M
B) $2.9 \times 10^{-4} \mathrm{M}$
C) $1.8 \times 10^{-3} \mathrm{M}$
D) $2.1 \times 10^{-2} \mathrm{M}$
E) $1.0 \times 10^{-4} \mathrm{M}$

Answer: C

	HF	H^{+}	F^{-}
I	0.6	0	0.24
C	-X	X	X
E	$0.60-\mathrm{x}$	X	$0.24+\mathrm{x}$

$\mathrm{K}_{\mathrm{a}}=\mathrm{x}(0.24+\mathrm{x}) /(0.6-\mathrm{x})=\mathrm{x}(0.24) / 0.6$ (approx)
$\left(7.2 \times 10^{-4}\right) 0.6 /(0.24)=1.8 \times 10^{-3}$
Chapter 7
3. For ammonia $\left(\mathrm{NH}_{3}\right), K_{\mathrm{b}}$ is 1.8×10^{-5}. The buffering capacity of a 1 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is at a maximum at a pH of
A) 4.7
B) 7.2
C) 12.2
D) 9.3
E) none of these

Answer: D
$p K_{b}=-4.75$
$\mathrm{pK}_{\mathrm{a}}=9.3$, buffering capacity is max when $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
Chapter 8
4. Consider the following information about diprotic ascorbic acid $\left(\mathrm{H}_{2} \mathrm{As}\right)$.

	K_{a}	$\mathrm{p} K_{\mathrm{a}}$
$\mathrm{H}_{2} \mathrm{As} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HAs}^{-}$	7.9×10^{-5}	4.10
$\mathrm{HAs}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{As}^{2-}$	1.6×10^{-12}	11.8

The curve for titration of disodium ascorbate $\left(\mathrm{Na}_{2} \mathrm{As}\right)$ with HCl is shown below:

What major species is (are) present at point III of the titration curve (note that the titration starts with

$$
\text { essentially } \left.100 \% \mathrm{As}^{2-}\right) \text { ? }
$$

A) As^{2-} and HAs^{-}

Exam 3 Test Form A Chem $1310 \quad$ Fall $2008 \quad 11 / 24 / 2008$ Dr. Williams
Print Name \qquad Signature \qquad
B) HAs^{-}only
C) HAs^{-}and $\mathrm{H}_{2} \mathrm{As}$
D) H_{2} As only
E) $\mathrm{H}_{2} \mathrm{As}$ and H^{+}

Answer: C
Chapter 8
5. Refering to the disodium ascorbate titration above: which of the following is a major species present at point IV?
A) $\mathrm{H}_{2} \mathrm{As}$
B) HAs^{-}
C) As^{2-}
D) H^{+}
E) none of these

Answer: A
Chapter 8
\qquad Signature \qquad
6. A gas releases 3.8 J of heat to the surroundings and performs 13.7 J of work. What is the change in energy of the gas?
A) -17.6 J
B) 17.6 J
C) -9.9 J
D) 9.9 J
E) 3.8 J

Answer: A
$\Delta E=q+w=-3.8 \mathrm{~J}+(-13.7 \mathrm{~J})=-17.6 \mathrm{~J}$
Chapter 9
6. (question not used) Calculate ΔE for a system that releases 35 J of heat to the surroundings while 54 J of work is done on it.
A) -89 J
B) -19 J
C) 19 J
D) 89 J
E) 35 J

Answer: C
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=-35 \mathrm{~J}+54 \mathrm{~J}=+19 \mathrm{~J}$
Chapter 9
7. Which of the following statements is false?
A) In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same, whether the reaction takes place in a series of steps or in a single step.
B) The entropy of the universe increases for any spontaneous process.
C) The energy of the universe is conserved.
D) A system will always proceed spontaneously to the arrangement with the lowest enthalpy.
E) Energy cannot be created or destroyed.

Answer: D
7 (question not used). Calculate the work for the expansion of an ideal gas from 3.0 to 6.0 L against an external pressure of 1.6 atm at constant temperature.
A) $4.8 \mathrm{~L} \cdot \mathrm{~atm}$
B) $-4.8 \mathrm{~L} \cdot \mathrm{~atm}$
C) $0.0 \mathrm{~L} \cdot \mathrm{~atm}$
D) $5.6 \mathrm{~L} \cdot \mathrm{~atm}$
E) $-1.9 \mathrm{~L} \cdot \mathrm{~atm}$

Answer: B
$w=-P \Delta V=-1.6 \mathrm{~atm}(6.0 \mathrm{~L}-3.0 \mathrm{~L})=-4.8 \mathrm{~L}-\mathrm{atm}$
Chapter 9
7 (question not used). Calculate the work for the compression of an ideal gas from 6.0 to 3.0 L against an external pressure of 1.6 atm at constant temperature.
A) $4.8 \mathrm{~L} \cdot \mathrm{~atm}$
B) $-4.8 \mathrm{~L} \cdot \mathrm{~atm}$
C) $0.0 \mathrm{~L} \cdot \mathrm{~atm}$
D) $5.6 \mathrm{~L} \cdot \mathrm{~atm}$
E) $-1.9 \mathrm{~L} \cdot \mathrm{~atm}$

Answer: A
$\mathrm{w}=-\mathrm{P} \Delta \mathrm{V}=-1.6 \mathrm{~atm}(3.0 \mathrm{~L}-6.0 \mathrm{~L})=4.8 \mathrm{~L}-\mathrm{atm}$
Chapter 9
Consider the following process carried out on 1.0 mol of a monatomic ideal gas at constant pressure:
\qquad Signature \qquad
Start: (3.00 atm, 20.0 L)
End: (3.00 atm, 50.0 L).
8. Calculate the work, w.
A) $-90 \mathrm{~L} \cdot \mathrm{~atm}$
B) $90 \mathrm{~L} \cdot \mathrm{~atm}$
C) $-30 \mathrm{~L} \cdot \mathrm{~atm}$
D) $30 \mathrm{~L} \cdot \mathrm{~atm}$
E) $0 \mathrm{~L} \cdot \mathrm{~atm}$

Answer: A
$w=-P \Delta V=-3 \mathrm{~atm}(50 \mathrm{~L}-20 \mathrm{~L})=-90 \mathrm{~L}-\mathrm{atm}$
Chapter 9
9. Calculate the heat, q.
A) $226 \mathrm{~L} \cdot \mathrm{~atm}$
B) $-226 \mathrm{~L} \cdot \mathrm{~atm}$
C) $135 \mathrm{~L} \cdot \mathrm{~atm}$
D) $-135 \mathrm{~L} \cdot \mathrm{~atm}$
E) none of these

Answer: A
$\mathrm{T}(\mathrm{A})=\mathrm{PV} / \mathrm{nR}=(3 \mathrm{~atm})(20 \mathrm{~L}) /\left[(1.0 \mathrm{~mol})\left(0.082 \mathrm{~L}^{2}-\mathrm{atm} \mathrm{mol}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)\right]=731 \mathrm{~K}$
$\mathrm{T}(\mathrm{B})=\mathrm{PV} / \mathrm{nR}=(3 \mathrm{~atm})(50 \mathrm{~L}) /\left[(1.0 \mathrm{~mol})\left(0.082 \mathrm{~L}^{\mathrm{L}}\right.\right.$-atm $\left.\left.\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)\right]=1830 \mathrm{~K}$
$\Delta T=1099 \mathrm{~K}$
$\mathrm{q}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=(1 \mathrm{~mol})\left(5 / 2 \mathrm{R} \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)(101 \mathrm{~J} / \mathrm{L}-\mathrm{atm})^{-1}(1099 \mathrm{~K})$ $=(5 / 2 \times 8.31) 1099 / 101=226$ L-atm
10. The same amount of heat is added to two metal blocks of equal number of moles but made of different metals. Which undergoes the smaller change in temperature?
A) The metal with the higher heat capacity.
B) The metal with the lower heat capacity.
C) Both undergo the same change in temperature.
D) To determine this, you need to know the initial temperatures of the metals.
E) To determine this, you need to know which metals you are talking about.

Answer: A
Chapter 9
11. As a warm brick (the system) spontaneously cools in a cold pool of water (the surroundings), the entropy of the brick ($\mathrm{S}_{\text {system }}$)
A) increases
B) decreases
C) does not change
D) changes in a way that cannot be predicted
E) all of the above

Answer: B
Chapter 10

Print Name \qquad Signature \qquad
12. As the warm brick (the system) spontaneously cools in the cold pool of water (the surroundings), the entropy of the surroundings ($\mathrm{S}_{\text {surroundings }}$)
A) increases
B) decreases
C) does not change
D) changes in a way that cannot be predicted
E) all of the above

Chapter 10
Answer: A
13. As the warm brick (the system) spontaneously cools in the cold pool of water (the surroundings),
A) $\left|\Delta S_{\text {system }}\right|>\left|\Delta S_{\text {surroundings }}\right|$
B) $\left|\Delta \mathrm{S}_{\text {system }}\right|<\left|\Delta \mathrm{S}_{\text {surroundings }}\right|$
C) $\left|\Delta \mathrm{S}_{\text {system }}\right|=\left|\Delta \mathrm{S}_{\text {surroundings }}\right|$
D) the relationship of $\left|\Delta \mathrm{S}_{\text {system }}\right|$ and $\left|\Delta \mathrm{S}_{\text {surroundings }}\right|$ cannot be predicted
E) none of the above

Chapter 10
Answer: B
14. Consider the gas phase reaction

$$
\mathrm{NO}+(1 / 2) \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{2}
$$

$$
\Delta H^{\circ}=-57.0 \mathrm{~kJ} / \mathrm{mol}
$$

What is ΔH° for the following reaction:

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

A) 57.0 kJ
B) -114 kJ
C) 114 kJ
D) -28.5 kJ
E) 778 kJ

Answer: B
Chapter 9
15. In a reaction where a diatomic molecule (for example O_{2}) spontaneously forms from its atoms at standard temperature and pressure, what are the signs of $\Delta H, \Delta S$, and ΔG, respectively?
A) - - -
B) $+\quad+\quad+$
C) $+\quad-\quad-$
D) $-\quad+\quad+$
E) - - +

Answer: A
Chapter 10
16. Consider the spontaneous freezing of liquid water at $-10^{\circ} \mathrm{C}$. For this process what are the signs for ΔH, ΔS, and ΔG, respectively?
A) $+\quad-0$
B) $-\quad+0$
C) $-\quad+\quad-$
D) $+\quad-\quad-$
E) - - -

Answer: E
Chapter 10
\qquad Signature \qquad
17. Which one of the following processes has $\Delta \mathrm{H}<0$?
A) freezing of liquid Hg
B) combustion of cellulose
C) cooling water
D) all of the above (a-c)
E) none of the above (a-c)

Chapter 9
Answer: D
18. In SI units the universal gas constant R is $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. R is also $0.0820 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Therefore, 1.00 L -atm is equivalent to how many J ?
A) 9.87
B) 9.87×10^{-3}
C) 101.3
D) 1.013×10^{5}
E) none of these are correct.

Answer: C
19. For a balloon expanding against atmospheric pressure, the work done on the air in the balloon is
A) positive
B) negative
C) of indeterminate sign
D) zero
E) this cannot be answered without additional information.

Answer: B
20. This is Test Form (look at the top of the page):
A) A
B) $\quad \mathrm{B}$
C) $\quad \mathrm{C}$
D) $\quad \mathrm{D}$

Exam 3 Test Form A Chem $1310 \quad$ Fall $2008 \quad 11 / 24 / 2008$ Dr. Williams
Print Name \qquad Signature \qquad
Extra Credit / Bonus: The following bonus questions are worth just one point (1 pt) each!
Consider the gas-phase reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+(\mathrm{l} / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) .
$$

Standard gas phase thermodynamic information is available:
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2}\right)=0.0$
$\mathrm{S}_{\mathrm{f}}{ }_{\mathrm{f}}\left(\mathrm{H}_{2}\right)=131 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)=0.0$
$\mathrm{S}_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)=205 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=-242 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{S}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=189 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
21. What is $\Delta \mathrm{H}_{\mathrm{r}}^{\circ}$ for this reaction?
A) $+121 \mathrm{~kJ} / \mathrm{mol}$
B) $-121 \mathrm{~kJ} / \mathrm{mol}$
C) $+242 \mathrm{~kJ} / \mathrm{mol}$
D) - $242 \mathrm{~kJ} / \mathrm{mol}$
E) Cannot be determined from the information given.
Answer: D
22. What is $\Delta \mathrm{S}^{\circ}{ }_{\mathrm{r}}$ for this reaction?
A) $+44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
B) - $44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
C) $+147 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
D) -147 J/mol-K
E) Cannot be determined from the information given.

Answer: B
$189-(1 / 2) 205-131=-44$
23. What is $\Delta \mathrm{G}_{\mathrm{r}}^{\circ}$ for this reaction at 298 K ?
A) $-255 \mathrm{~kJ} / \mathrm{mol}$
B) $-229 \mathrm{~kJ} / \mathrm{mol}$
C) $+229 \mathrm{~kJ} / \mathrm{mol}$
D) $+255 \mathrm{~kJ} / \mathrm{mol}$
E) Cannot be determined using the information given.

Answer: B
$-242-(298)(-44 / 1000)=-229$
24. For this reaction, at about what temperature is $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{r}}=0$?
A) 5.5 K
B) 300 K
C) 5200 K
D) 5500 K
E) Cannot be determined using the information given.

Answer: D
$\mathrm{T}=242 / .044=5500 \mathrm{~K}$
25. For this reaction, what is the approximate value of $\ln \left(\mathrm{K}_{\mathrm{eq}}\right)$ at $\mathrm{T}=1000 \mathrm{~K}$?
A) 24
B) 29
C) 34
D) -24
E) Cannot be determined using the information given.
Answer: A
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}=-242-1000(-0.044)=-198=-\mathrm{RT} \ln \left(\mathrm{K}_{\text {eq }}\right)$
$\ln \left(\mathrm{K}_{\mathrm{eq}}\right)=(198000 \mathrm{~J} / \mathrm{mol}) /[(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K})(1000 \mathrm{~K})]=23.8$
26. The maximum work (in absolute value) obtainable from this reaction at 1000 K , and $\mathrm{Q}=0.0025$ (Q is the reaction quotient) is approximately:
A) $0 \mathrm{~kJ} / \mathrm{mol}$
B) $150 \mathrm{~kJ} / \mathrm{mol}$
C) $200 \mathrm{~kJ} / \mathrm{mol}$
D) $250 \mathrm{~kJ} / \mathrm{mol}$
E) Cannot be determined using the information given.

Answer: D
$\mathrm{w}=-198000+8.3^{*} 1000 \ln (0.0025)=-198000 \mathrm{~J} / \mathrm{mol}-50000 \mathrm{~J} / \mathrm{mol}=-248 \mathrm{~kJ} / \mathrm{mol}$
\qquad
\qquad

1 mole atoms $=6.022 \times 10^{23}$ atoms
$h=6.626 \times 10^{-34} J s \quad 1 \mathrm{~J}$ (Joule) $=1 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
$1 \mathrm{~J}($ Joule $)=.00987 \mathrm{~L}-\mathrm{atm} \quad($ or $101.3 \mathrm{~J} / \mathrm{L}-\mathrm{atm})$
$c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Mass Electron $=9.10939 \times 10^{-31} \mathrm{~kg}$
Mass Proton $=1.67 \times 10^{-27} \mathrm{~kg}$
Mass Neutron $=1.67 \times 10^{-27} \mathrm{~kg}$
$R=0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{mol}-\mathrm{K}} \quad R=8.31 \frac{\mathrm{~J}}{\mathrm{~mol}-\mathrm{K}}$
Vapor Pr essure $\left(\mathrm{H}_{2} \mathrm{O}, 373 \mathrm{~K}\right)=760$ torr
Formal Charge $=\mathrm{V}-(\mathrm{L}+0.5 \mathrm{~S})$
$\mathrm{V}=$ Number of Valence Electrons
L = Number of Lone Pair Electrons
S = Number of Shared Electrons

$P=X_{1} \bullet P^{o}$
$m=$ molality $=\frac{\text { mol of solute }}{\mathrm{kg} \text { of solvent }}$
$\Delta T_{f}=-m \bullet K_{f} \quad \Delta T_{b}=m \bullet K_{b}$
$X_{1}=$ mole fraction $=\frac{\mathrm{n}_{1}}{\mathrm{n}_{\text {total }}}$
$\Pi=M R T$
$q=m C \Delta T$
$q_{v}=n C_{V} \Delta T$
$q_{p}=n C_{p} \Delta T \quad d S=\frac{d q}{T}$
$\Delta G=\Delta H-T \Delta S$
$\Delta G^{o}=-R T \ln K \quad \Delta G=\Delta G^{o}+R T \ln Q$
$T_{c}=\frac{\Delta H}{\Delta S}$
$C_{\text {water }}=4.184 \frac{J}{\text { gram K }}$
$\mathrm{E}($ monatomic $)=\mathrm{KE}(\mathrm{mol})=3 / 2(\mathrm{RT})=3 / 2(\mathrm{PV}) \quad \mathrm{KE}($ particle $)=1 / 2 \mathrm{mu}^{2}$

Print Ne

		$\left\lvert\, \begin{array}{ccc} \text { Nu } \\ \text { 筧 } \\ \hline \end{array}\right.$		$\left\lvert\, \begin{array}{lll} \infty & n \\ \overbrace{0} & \infty & \omega \\ \text { s. } \\ \hline \end{array}\right.$				
		荷品						
			$\left\lvert\, \begin{array}{lll} \infty & -1 \\ 0 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$					
		$\left\lvert\, \begin{array}{ccc} \text { No } \\ \text { Noll } \\ \hline \end{array}\right.$		$\stackrel{H}{0}$				
					$\begin{array}{lll} u & 3 & N \\ \infty & \vec{g} & 1 \\ \omega & 0 & \alpha \end{array}$			
					$\begin{aligned} & \hline \text { un } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
		$\begin{array}{\|cc\|} \hline 0 & \text { に } \\ \text { O- } & \text { - } \end{array}$						
		$\left\lvert\, \begin{array}{ll} \text { N } & \text { N } \\ \text { N } \end{array}\right.$						
		$\left\lvert\, \begin{array}{ll} \mathbb{O} & \text { こ } \\ -3 & \text { N } \end{array}\right.$						
		っ						
		官					$\begin{aligned} & \text { No } \\ & \text { 曾 } \\ & \text { 家 } \end{aligned}$	
算								
			$\left\lvert\, \begin{array}{ccc} 0.0 & 0 & \infty \\ 0 & 0 \\ 0 & 0 & \infty \\ \hline 1 & 0 & A \end{array}\right.$			$\text { 笏导 } \boldsymbol{\sim}$		
苟䓂								
							N	

Answer：B

Signature \qquad

