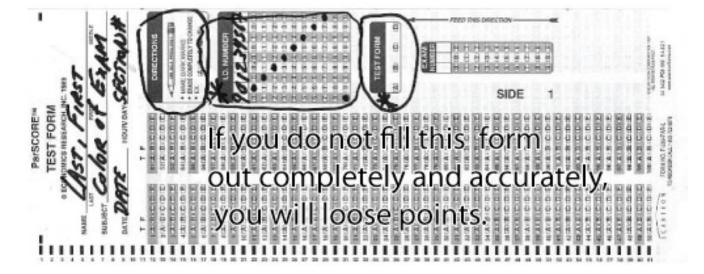
LAAIII J	Exam	3
----------	------	---

Print Name_____ Signature _

This test is <u>closed</u> note/book. One 8.5 x 11 handwritten crib sheet (one sided) is permitted.

Use a #2 pencil. Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Please turn off your cell phone. Cell phones may not be used as calculators.


Write your name on this exam. Complete the Scantron card as shown below. You must bubble in your ID number, write in your section number and identify your Test Form (see top of this page). Scantron errors and omissions are punishable by point deductions.

When you take the exam, bubble in the scanton form *and* circle your answers on this exam. You must hand in both the scantron and the exam.

A total of 50 minutes is allotted for the exam. There are 20 questions. Each is worth five points. Answer every question. There is no penalty for guessing.

Circle Your Section Number

A1	M 2-3PM	CoC 52
A2	M 2-3PM	CoC 53
A3	M 2-3PM	MSE 1201A
A4	M 2-3PM	MSE 1222
A5	M 2-3PM	MSE 1224
B1	M 3-4PM	CoC 52
B2	M 3-4PM	CoC 53
B3	M 3-4PM	MSE 12101A
B4	M 3-4PM	MSE 1222
B5	M 3-4PM	MSE 1224

Exam 3	Test Form A	Chem 1310	Fall 2008	11/24/2008	Dr. Williams

Print Name_

Signature ____

1. You are given a solution of the weak base Novocain, Nvc. The pH of the solution is 11.0. You add the chloride salt of the conjugate acid of Novocain, NvcH⁺Cl⁻. Which statement is true?

A) The pH and the pOH both increase.

B) The pH and the pOH both decrease.

C) The pH and the pOH remain unchanged.

D) The pH increases and pOH decreases.

E) The pH decreases and the pOH increases.

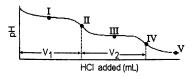
Answer: E Chapter 7

2. Calculate [H⁺] in a solution that is 0.24 M in NaF and 0.60 M in HF ($K_a = 7.2 \times 10^{-4}$). A) 0.60 M

B) $2.9 \ge 10^{-4} M$ $\dot{\mathbf{C}}$ 1.8 x 10⁻³ M D) 2.1 x $10^{-2} M$ E) 1.0 x $10^{-4} M$ Answer: C

	HF	H+	F-
Ι	0.6	0	0.24
С	-X	Х	Х
Е	0.60-x	Х	0.24+x

 $K_a = x(0.24+x)/(0.6-x) = x(0.24)/0.6$ (approx) $(7.2 \times 10^{-4})0.6/(0.24) = 1.8 \times 10^{-3}$ Chapter 7


3. For ammonia (NH₃), $K_{\rm b}$ is 1.8 x 10⁻⁵. The buffering capacity of a 1 M solution of NH₄Cl is at a maximum at a pH of

A) 4.7 **B)** 7.2 C) 12.2 D) 9.3 E) none of these Answer: D $pK_{b} = -4.75$ $pK_a = 9.3$, buffering capacity is max when $pH = pK_a$ Chapter 8

4. Consider the following information about diprotic ascorbic acid (H₂As).

	Ka	pK _a
$H_2As = H^+ + HAs^-$	7.9 x 10 ⁻⁵	4.10
$HAs^{-} = H^{+} + As^{2-}$	1.6 x 10 ⁻¹²	11.8

The curve for titration of disodium ascorbate (Na₂As) with HCl is shown below:

What major species is (are) present at point III of the titration curve (note that the titration starts with essentially 100% As^{2^-} ? A) As^{2^-} and HAs^-

Print Name_____

Signature _____

B) HAs⁻ only C) HAs⁻ and H₂As D) H₂As only E) H₂As and H⁺ Answer: C Chapter 8

5. Refering to the disodium ascorbate titration above: which of the following is a major species present at point IV?

A) H_2As B) HAs^- C) As^{2-} D) H^+ E) none of these Answer: A Chapter 8

Exam 3	Test Form A	Chem 1310	Fall 2008	11/24/2008	Dr. Williams
D N		0:			
Print Name		Signa	ture		

6. A gas releases 3.8 J of heat to the surroundings and performs 13.7 J of work. What is the change in energy of the gas?

A) -17.6 J B) 17.6 J C) -9.9 J D) 9.9 J E) 3.8 J Answer: A $\Delta E = q + w = -3.8 J + (-13.7 J) = -17.6 J$ Chapter 9 6. (question not used) Calculate ΔE for a system that releases 35 J of heat to the surroundings while 54 J of work is done on it. A) -89 J B) - 19 J**C**) 19 J D) 89 J E) 35 J Answer: C $\Delta E = q + w = -35 J + 54 J = +19 J$

Chapter 9

7. Which of the following statements is <u>false</u>?

A) In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same, whether the reaction takes place in a series of steps or in a single step.

B) The entropy of the universe increases for any spontaneous process.

C) The energy of the universe is conserved.

D) A system will always proceed spontaneously to the arrangement with the lowest enthalpy.

E) Energy cannot be created or destroyed.

Answer: D

7 (question not used). Calculate the work for the expansion of an ideal gas from 3.0 to 6.0 L against an external pressure of 1.6 atm at constant temperature.

A) $4.8 \text{ L} \cdot \text{atm}$ B) $-4.8 \text{ L} \cdot \text{atm}$ C) $0.0 \text{ L} \cdot \text{atm}$ D) $5.6 \text{ L} \cdot \text{atm}$ E) $-1.9 \text{ L} \cdot \text{atm}$ Answer: B w = $-P\Delta V = -1.6 \text{ atm} (6.0 \text{ L} - 3.0 \text{ L}) = -4.8 \text{ L} \cdot \text{atm}$ Chapter 9

7 (question not used). Calculate the work for the compression of an ideal gas from 6.0 to 3.0 L against an external pressure of 1.6 atm at constant temperature.

A) 4.8 L•atm B) -4.8 L•atm C) 0.0 L•atm D) 5.6 L•atm E) -1.9 L•atm Answer: A w = -P Δ V = -1.6 atm (3.0 L - 6.0 L) = 4.8 L-atm Chapter 9

Consider the following process carried out on 1.0 mol of a monatomic ideal gas at constant pressure:

Print Name

Signature _____

Start: (3.00 atm, 20.0 L) End: (3.00 atm, 50.0 L).

8. Calculate the work, w. A) -90 L•atm B) 90 L•atm C) -30 L•atm D) 30 L•atm E) 0 L•atm Answer: A w = -P Δ V = -3 atm (50 L - 20 L) = - 90 L-atm Chapter 9

9. Calculate the heat, q. A) 226 L•atm B) -226 L•atm C) 135 L•atm D) -135 L•atm E) none of these Answer: A $T(A) = PV/nR = (3 \text{ atm})(20 \text{ L})/[(1.0 \text{ mol})(0.082 \text{ L-atm mol}^{-1} \text{ mol}^{-1} \text{ K}^{-1})] = 731 \text{ K}$ $T(B) = PV/nR = (3 \text{ atm})(50 \text{ L})/[(1.0 \text{ mol})(0.082 \text{ L-atm mol}^{-1} \text{ K}^{-1})] = 1830 \text{ K}$ $\Delta T = 1099 \text{ K}$ $q = nC_p\Delta T = (1 \text{ mol})(5/2 \text{ R J mol}^{-1} \text{ K}^{-1})(101 \text{ J/L-atm})^{-1}(1099 \text{ K})$ $= (5/2 \times 8.31) 1099/101 = 226 \text{ L-atm}$

10. The same amount of heat is added to two metal blocks of equal number of moles but made of different metals. Which undergoes the smaller change in temperature?

A) The metal with the higher heat capacity.

B) The metal with the lower heat capacity.

C) Both undergo the same change in temperature.

D) To determine this, you need to know the initial temperatures of the metals.

E) To determine this, you need to know which metals you are talking about.

Answer: A

Chapter 9

11. As a warm brick (the system) spontaneously cools in a cold pool of water (the surroundings), the entropy of the brick (S_{system})

A) increases

B) decreases

C) does not change

D) changes in a way that cannot be predicted

E) all of the above

Answer: B

Chapter 10

Exam 3	Test Form A	Chem 1310	Fall 2008	11/24/2008	Dr. Williams			
Print Name		_ Signat	ture					
	ppy of the surroun			pool of water (the su	irroundings), the			
D) changes in a way that cannot be predicted								
E) all of the ab	ove							
Chapter 10								
Answer: A								

13. As the warm brick (the system) spontaneously cools in the cold pool of water (the surroundings),

A) $|\Delta S_{system}| > |\Delta S_{surroundings}|$ B) $|\Delta S_{system}| < |\Delta S_{surroundings}|$ C) $|\Delta S_{system}| = |\Delta S_{surroundings}|$ D) the relationship of $|\Delta S_{system}|$ and $|\Delta S_{surroundings}|$ cannot be predicted E) none of the above Chapter 10

Answer: B

14. Consider the gas phase reaction NO + $(1/2)O_2 \implies NO_2$

 $\Delta H^{\circ} = -57.0 \text{ kJ/mol}$

What is ΔH° for the following reaction:

 $2NO + O_2 \implies 2NO_2$ A) 57.0 kJ B) -114 kJ C) 114 kJ D) -28.5 kJ E) 778 kJ Answer: B Chapter 9

15. In a reaction where a diatomic molecule (for example O_2) spontaneously forms from its atoms at standard temperature and pressure, what are the signs of ΔH , ΔS , and ΔG , respectively?

A) - - -B) + + + C) + - -D) - + + E) - - + Answer: A Chapter 10

16. Consider the spontaneous freezing of liquid water at -10° C. For this process what are the signs for ΔH , ΔS , and ΔG , respectively?

Exam 3	Test Form A	Chem 1310	Fall 2008	11/24/2008	Dr. Williams

Print Name_____

Signature _____

17. Which one of the following processes has $\Delta H < 0$?

- A) freezing of liquid Hg
- B) combustion of cellulose
- C) cooling water
- D) all of the above (a-c)
- E) none of the above (a-c)

Chapter 9 Answer: D

18. In SI units the universal gas constant R is 8.31 J mol⁻¹K⁻¹. R is also 0.0820 L atm mol⁻¹K⁻¹. Therefore, 1.00 L-atm is equivalent to how many J?

A) 9.87

B) 9.87 x 10^{-3}

C) 101.3

D) 1.013×10^5

E) none of these are correct.

Answer: C

19. For a balloon expanding against atmospheric pressure, the work done on the air in the balloon is

- A) positive
- B) negative
- C) of indeterminate sign
- D) zero
- E) this cannot be answered without additional information.
- Answer: B

20. This is Test Form (look at the top of the page):

- A) A
- B) B
- **C**) **C**
- D) D

Exam 3	Test Form A	Chem 1310	Fall 2008	11/24/2008	Dr. Williams						
Print Name_		Signa	ture								
Extra Credit / Bonus: The following bonus questions are worth just one point (1 pt) each!											
Consider the gas-phase reaction											
	$H_{2}\left(g\right)$	$+ (1/2) O_2(g) =$	➡ H ₂ O (g).								
Standard gas	phase thermodynam	ic information is	available:								
$\begin{split} \Delta H^{\circ}{}_{\rm f} \left(H_2 \right) &= 0 \\ \Delta H^{\circ}{}_{\rm f} \left(O_2 \right) &= 0 \\ \Delta H^{\circ}{}_{\rm f} \left(H_2 O \right) &= \end{split}$		$S_{f}^{\circ}(H_{2}) = 131$ $S_{f}^{\circ}(O_{2}) = 205$ $S_{f}^{\circ}(H_{2}O) = 189$	J/mol-K								
A) + 121 kJ/m	H° _r for this reaction nol B) - 12 not be determined fr	21 kJ/mol		ol D) - 24	12 kJ/mol						
A) + 44 J/mol	S°_{r} for this reaction -K B) - 44 determined from the 131 = -44	4 J/mol-K		l-K D) -14	7 J/mol-K						
A) -255 kJ/mc E) Cannot be Answer: B	G°_{r} for this reaction bl B) -22 determined using th 4/1000) = -229	9 kJ/mol		ol D) +25	55 kJ/mol						
A) 5.5 K	action, at about wha B) 300 determined using th 5500K	K	C) 5200 K	D) 550	00 K.						
A) 24 E) Cannot be Answer: A $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta$	action, what is the a B) 29 determined using th S°= -242-1000(-0.0 000 J /mol)/ [(8.31	e information giv 44) = -198 = - R'	C) 34 en. $\Gamma \ln(K_{eq})$	1000 K? D) -24							
the reaction qu A) 0 kJ/mol E) Cannot be Answer: D	mum work (in abso uotient) is approxim B) 150 determined using th + 8.3*1000ln(0.002.	aately: kJ/mol e information giv	C) 200 kJ/mol en.	D) 250	d Q = 0.0025 (Q is) kJ/mol						

Signature _____ Print Name____ 1 mole atoms = $6.022 \times 10^{23} atoms$ $h = 6.626 \times 10^{-34} Js$ 1 J (Joule) = 1 kg $\frac{m^2}{s^2}$ 1 J (Joule) = .00987 L - atm (or 101.3 J/L - atm) $c = 3.0 x 10^8 m/s$ Mass Electron = $9.10939 \times 10^{-31} kg$ Mass Proton = $1.67 \times 10^{-27} kg$ Mass Neutron = $1.67 \times 10^{-27} kg$ $R = 0.0821 \frac{L - atm}{mol - K}$ $R = 8.31 \frac{J}{mol - K}$ $Vapor \Pr essure(H_2O, 373K) = 760 torr$ Formal Charge = V - (L + 0.5 S)V = Number of Valence Electrons L = Number of Lone Pair Electrons S = Number of Shared Electrons

$$\succ$$

$$P = X_1 \bullet P^\circ$$

$$m = molality = \frac{\text{mol of solute}}{kg \text{ of solvent}}$$

$$\Delta T_f = -m \bullet K_f \qquad \Delta T_b = m \bullet K_b$$

$$X_1 = \text{ mole fraction} = \frac{n_1}{n_{\text{total}}}$$

$$\Pi = MRT$$

$$q = mC\Delta T$$
 $q_v = nC_v\Delta T$

$$q_{p} = nC_{p}\Delta T \qquad dS = \frac{dq}{T}$$

$$\Delta G = \Delta H - T\Delta S \qquad \Delta G^{o} = -RT\ln K \qquad \Delta G = \Delta G^{o} + RT\ln Q$$

$$T_{c} = \frac{\Delta H}{\Delta S} \qquad C_{water} = 4.184 \frac{J}{gram K}$$

$$E(\text{monatomic}) = \text{KE}(\text{mol}) = 3/2 \text{ (RT)} = 3/2 \text{ (PV)}$$

$$c = \lambda v \qquad E = mc^{2} \qquad \lambda = \frac{h}{p}$$
$$\hat{H}\psi = E\psi \qquad \Delta x * m\Delta v \ge \frac{h}{4\pi}$$

Maximum Occupancy = $2n^2$

$$pH = -\log[H^{+}] \qquad pOH = -\log[OH^{-}]$$

$$K_{w} = K_{a}K_{b} \qquad pH + pOH = 14$$

$$HA(aq) \leftrightarrow H^{+}(aq) + A^{-}(aq)$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$K_{w} = 1 \times 10^{-14} \text{ at } 25^{\circ}C$$

$$B(aq) \leftrightarrow BH^{+}(aq) + OH^{-}(aq)$$

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$

$$pKa = -\log K_{a} \qquad pKw = 14 \text{ at } 25^{\circ}C$$

$$\Delta E = q + w$$

$$w = -P_{ext}\Delta V$$

$$C_{p} = \frac{5}{2}R \text{ (monoatomic ideal gas)}$$

$$C_{v} = \frac{3}{2}R \text{ (monoatomic ideal gas)}$$

$$\Delta H = q_{p} \text{ (constant temperature)}$$

$$w_{w} = -nPT\ln\left(\frac{V_{2}}{2}\right)$$

$$w_{\rm rev} = -nRT \ln\left(\frac{V_2}{V_1}\right)$$

KE(particle) = $1/2mu^2$

Print Na

232.0381

231.03588 Pa 91

238.0289 Urani **U** 22

(237

(244) Pu

Am mericium (243)

Curium (247) Cm 96

Berkelium (247)

aliforn (251

(252

ermium (257)

lendelevi (258) Md 101 .934

awrencii (262)

97 9

86 Q

66 Es

Fm

102 **No** Nobelium (259)

103Ę

Erbium 167.26 100

90 F

> 93 145

150.36 94

151.96 95

	·																	
	Francium (223)	132.90343 87	Cesium Cesium	55	Rb Rubidium 85.4678	37	Potassium 39.0983	K	19	Sodium 22.989770	Na	11	Lithium 6.941	Li	З	Hydrogen 1.00794	Η	1
	Ra Radium (226)	88	Barium	56	Strontium 87.62	38	Calcium 40.078		20	Magnesium 24.3050	Mg	12	Beryllium 9.012182	Be	4			
	Ac Actinium (227)	68 5006.851	Lanthanum	57	Y Vttrium 88.90585	39	Scandium 44.955910	Sc	21							-		
	Rf Rutherfordium (261)	1/8.49	Hafinium	72	Zirconium 91.224	40	Titanium 47.867		22									
58 Ce ^{Cerium} 140.116		180.9479	Tantalum Tantalum	73	Niobium 92.90638	41	Vanadium 50.9415	V	23									
59 Pr Praseodymium 140.90765	Sg Seaborgium (263)	185.84	Tungsten	74	Molybdenum 95.94	42	Chromium 51.9961	Cr	24									
60 Nd Neodymium 144.24	Bh Bohrium (262)	186.207	Re	75	Technetium (98)	43	Manganese 54.938049	Mn	25									
61 Pm Promethium (145)	Hs Hassium (265)	190.23		76	Ru Ruthenium 101.07	44	Iron 55.845		26									
62 Sm Samatium 150.36	Mt ^{Meimerium} (266)	109	Iridium Iridium	77	Rh Rhodium 102.90550	45	Cobalt 58.933200	Co	27									
63 Ец ^{Ешорішт} 151.964	(269)	195.0/8	Platinum 105 076	78	Palladium 106.42	46	Nickel 58.6934	Z	28									
64 Gd Gadolinium 157.25	(272)	110.900.001	Au	79	Ag Silver 107.8682	47	Copper 63.546	Cu	29									
65 Tb ^{Terbium} 158.92534	(277)	112	Mercury	80	Cadmium 112.411	48	Zinc 65.39	Zn	30									
66 Dy Dysprosium 162.50		113	Thallium	81	Indium 114.818	49	Gallium 69.723	Ga	31	Aluminum 26.981538	Al	13	Boron 10.811	в	5			
67 Но Ношиш 164.93032		114	Pb Lead	82	Sn Tm 118.710	50	Germanium 72.61	Ge	32	Silicon 28.0855	Si	14	Carbon 12.0107	C	6			
68 Er Erbium 167.26		208.98038	Bismuth	83	Sb Antimony 121.760	51	Arsenic 74.92160	As	33	Phosphorus 30.973761	Р	15	Nitrogen 14.00674	Z	7			
69 Tm ^{Thulium} 168.93421		(202)	Polonium	84	Tellurium 127.60	52	Selenium 78.96	Se	34	ω.	S	16	Oxygen 15.9994	0	8			
70 Yb Ytterbium 173.04		(210)	Astatine	85	Iodine 126.90447	53	Bromine 79.904	Br	35	Chlorine 35.4527	C	17	Fluorine 18.9984032	Ţ	9			
71 Lu Lutetium 174.967		(222)	Radon	98	Хе ^{Хелоп} 131.29	54	Krypton 83.80	Kr	36	Argon 39.948	Ar	18	2	Ne	10	Helium 4.003	He	2

Answer: B

The Periodic Table of the Elements

Exam 3	Test Form A	Chem 1310	Fall 2008	11/24/2008	Dr. Williams
Print Name		Signa	ture		