\qquad
\qquad
This test is closed note/book. Two 8.5×11 handwritten crib sheets (two sided) are permitted. Use a \#2 pencil. Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Please turn off your cell phone. Cell phones may not be used as calculators.
Write your name on this exam. Complete the Scantron card as shown below. You must bubble in your ID number, write in your section number and identify your Test Form (see top of this page). Scantron errors and omissions are punishable by point deductions.
When you take the exam, bubble in the scanton form and circle your answers on this exam. You must hand in both the scantron and the exam.
A total of three hours is allotted for the exam. There are 55 questions. Each is worth five points. In addition there are seven extra credit questions at the end. Answer every question. There is no penalty for guessing.

Circle Your Section Number (or minus 5 points)

A1	M 2-3PM	CoC 52
A2	M 2-3PM	CoC 53
A3	M 2-3PM	MSE 1201A
A4	M 2-3PM	MSE 1222
A5	M 2-3PM	MSE 1224
B1	M 3-4PM	CoC 52
B2	M 3-4PM	CoC 53
B3	M 3-4PM	MSE 12101A
B4	M 3-4PM	MSE 1222
B5	M 3-4PM	MSE 1224

\qquad Signature \qquad

Section 1

1. Which of the following statements about salty water $\left(\mathrm{NaCl}_{\mathrm{aq}}\right)$ is false?
A) It has a relatively high boiling point.
B) Boiling it disrupts hydrogen bonds.
C) Boiling it disrupts London dispersion forces.
D) It readily dissolves $\mathrm{CH}_{3} \mathrm{CH}_{3}$.
E) It has a high molar heat capacity.

Answer: D, Chapter 4
2. For the reaction of 3.0 g hydrogen with 21 g oxygen, calculate the theoretical yield of water ($\mathrm{H}_{2} \mathrm{O}$).

$$
\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}
$$

A) 54 grams of $\mathrm{H}_{2} \mathrm{O}$
B) 12 grams of $\mathrm{H}_{2} \mathrm{O}$
C) 46 grams of $\mathrm{H}_{2} \mathrm{O}$
D) 23 grams of $\mathrm{H}_{2} \mathrm{O}$
E) 14 grams of $\mathrm{H}_{2} \mathrm{O}$

Answer: D, Chapter 3
H2: $(3 \mathrm{~g})(2 \mathrm{~g} / \mathrm{mol})^{-1}=1.5 \mathrm{~mol}$
O2: $(21 \mathrm{~g})(32 \mathrm{~g} / \mathrm{mol})^{-1}=0.65 \mathrm{~mol}$
1.5 mol H 2 will consume 0.75 mole O 2 ; O 2 is limiting
$\mathrm{H}_{2} \mathrm{O} ;(\mathrm{O} .65 \mathrm{~mol})(18 \mathrm{~g} / \mathrm{mol})(2)=23 \mathrm{~g}$
3. What is the total volume after adding water to a 20.0 mL solution of $0.96 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$ to give a final solution of $0.480 \mathrm{M}(\mathrm{aq})$?
A) 8.1 mL
B) 40 mL
C) 10 mL
D) 36 mL
E) 20 mL

Answer: B, Chapter
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} ; \quad(20 \mathrm{ml})(0.95 \mathrm{~mol} / \mathrm{L}) / 0.48 \mathrm{~mol} / \mathrm{L}=39.6 \mathrm{ml}$
4. Which of the following statements about a nitrogen atom is false?
A) The electrons occupy discrete energy levels.
B) The primary quantum number of an electron (n) can be increased by the absorption of light.
C) Light is absorbed and emitted at discrete wavelengths
D) Light is absorbed and emitted at discrete frequencies
E) None of the statements above are false

Answer: E, Chapter 12

Print Name \qquad Signature \qquad
5. Which of the following statements about electromagnetic radiation (in a vacuum) is false?
A) The photon energy specifies the wavelength (i.e., if you know the wavelength you know the energy).
B) The photon frequency specifies the wavelength.
C) The photon energy specifies the amplitude.
D) The photon frequency does not specify the phase.
E) The wavelength emitted by an atom is determined by differences in energy levels.

Answer: C, Chapter 12
6. Which of the following statements about atomic orbitals is false?
A) An orbital can hold only one electron.
B) Orbitals do not have precise boundaries
C) Hydrogen has fewer occupied orbitals than lithium.
D) An orbital is not an orbit.
E) The number of probability nodes increases with increasing n (primary quantum number)
Answer: A, Chapter 12
7. Which of the following frequencies corresponds to electromagnetic radiation with the greatest energy per photon?
A) $3.00 \times 10^{13} \mathrm{~s}^{-1}$
B) $8.50 \times 10^{20} \mathrm{~s}^{-1}$
C) $4.12 \times 10^{5} \mathrm{~s}^{-1}$
D) $9.12 \times 10^{12} \mathrm{~s}^{-1}$
E) $3.20 \times 10^{9} \mathrm{~s}^{-1}$

Answer: B, Chapter 12, $\mathrm{E}=\mathrm{h} v$
8. Which are possible quantum numbers of the unpaired electron of a fluorine atom?
(hint: $l=0=>s ; \quad l=l=>p ; \quad l=2=>d ; \quad l=3=>f$)
$\begin{array}{lllll} & n & l & m_{(l)} & m_{(s)} \\ \text { A) } & 1 & 1 & 0 & -1 / 2\end{array}$
B) $2 \quad 0 \quad 0 \quad 1 / 2$
C) $2 \quad 1 \quad-1 \quad 1 / 2$
D) $21 \begin{array}{lll}1 / 1 / 2\end{array}$
E) $4 \quad 2 \quad 0 \quad 1 / 2$

Answer: C, Chapter 12

Print Name \qquad Signature \qquad
9. What is the correct electron arrangement of a neutral nitrogen atom in the ground state?
a)

b) \uparrow

c)

Answer: A, Chapter 12
10. Which of the following molecules has a net dipole moment?
A) CBr_{4}
B) NF_{3}
C) CO_{2}
D) BI_{3}
E) NH_{4}^{+}

Answer: B, Chapter 13
11. Which bond has the smallest dipole moment?
A) $\mathrm{H}-\mathrm{F}$
B) $\mathrm{C}-\mathrm{N}$
C) $\mathrm{N}-\mathrm{N}$
D) $\mathrm{C}-\mathrm{O}$
E) $\mathrm{C}-\mathrm{F}$

Answer: C, Chapter 13
12. Which of the following statements is incorrect?
A) Ionic bonding results from the transfer of one or more electrons from one atom to another.
B) A bond dipole indicates the unequal distribution of electrons around the atoms in the bond.
C) The electrons in a polar bond are found nearer to the more electronegative atom.
D) A molecule with very polar bonds necessarily has a net dipole moment.
E) Linear molecules can have a net dipole moment.

Answer: D, Chapter 13

Print Name
Signature \qquad
13. The shape of $\mathrm{PO}_{4}{ }^{3-}$ is
A) Square Pyramidal
B) Tetrahedral
C) Truncated Octahedral
D) Distorted Tetrahedral
E) Seriously Bent

Answer: B, Chapter 13
14. Phosphorus has the molecular formula P_{4} while sulfur has the molecular formula S_{8}. How many grams of phosphorus contain the same number of molecules as 4.61 g of sulfur?
A) 2.2 g
B) 3.2 g
C) 6.2 g
D) 6.4 g
E) none of these

Answer: A, Chapter 3
$4.61 \mathrm{~g} /(8 \times 32.1 \mathrm{~g} / \mathrm{mol})=0.018 \mathrm{~mol} \mathrm{~S} 8 ; \quad(0.018 \mathrm{~mol})(4 \times 31 \mathrm{~g} / \mathrm{mol})=2.2 \mathrm{~g}$
15. Which one of these structures is incorrect (this image will be projected during the exam?

Answer: D

Section 2

16. Consider three flasks at 1000 K . Flask A contains 1 mole of He at 0.02 atm, flask B contains 1 mole of Ne at 0.04 atm , and flask C contains 1 mole of Xe at 0.06 atm . Assume that all three gases are ideal.

Print Name
Signature \qquad
In which flask do the gas particles have the highest average kinetic energy?
A) insufficient information
B) flask A
C) flask B
D) flask C
E) All are the same

Answer: E (KE=3/2RT)
17. A sample of 106 g of butanetriol, a non-dissociating, non-volatile liquid with the formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3}$, is dissolved in 582 g water. What is the vapor pressure of this solution at $100^{\circ} \mathrm{C}$?
A) 684 torr
B) 760 torr
C) 76 torr
D) 23 torr
E) 738 torr

Answer: E
$\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=582 \mathrm{~g} /(18 \mathrm{~g} / \mathrm{mol})=32.3 \mathrm{~mol}$
$\mathrm{n}_{\text {butanetriol }}=106 \mathrm{~g} /(106 \mathrm{~g} / \mathrm{mole})=1.0 \mathrm{~mol}$
$\mathrm{X}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{n} /(\mathrm{n}+1)=32.3 / 33.3=0.97$
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{X}_{\mathrm{H} 2 \mathrm{O}} \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}^{\circ}=0.97$ (760 torr) $=738$ torr
18. For the reaction:

$$
\mathrm{aA}(\mathrm{~g})+\mathrm{bB}(\mathrm{~g}) \rightleftharpoons \mathrm{cC}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-32 \mathrm{~kJ} / \mathrm{mol}
$$

with $\mathrm{a}=1, \mathrm{~b}=1$ and $\mathrm{c}=1$. An increase in total pressure (at constant Temperature).
A) increases the number of moles of A
B) decreases the number of moles of A
C) does not change the number of moles of A
D) has undetermined effect on the number of moles of A

Answer: B

Print Name \qquad Signature \qquad
19. For the reaction:

$$
\mathrm{aA}(\mathrm{~g})+\mathrm{bB}(\mathrm{~g}) \rightleftharpoons \mathrm{cC}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-32 \mathrm{~kJ} / \mathrm{mol}
$$

with $\mathrm{a}=1, \mathrm{~b}=1$ and $\mathrm{c}=1$. An increase in Temperature (at constant pressure).
A) increases the number of moles of A
B) decreases the number of moles of A
C) does not change the number of moles of A
D) has undetermined effect on the number of moles of A

Answer: A
20. Four identical 1.0-L flasks contain the gases $\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{CH}_{4}$, and NH_{3}, each at $0^{\circ} \mathrm{C}$ and 0.1 atm pressure. Assume that all gases behave ideally.
Which gas has the greatest number of molecules?
A) NH_{3}
B) H_{2}
C) Cl_{2}
D) CH_{4}
E) all the same

Answer: E
21. Consider two samples of helium (1 and 2) at the same temperature in separate containers. $\mathrm{V}_{1}=$ $2 \mathrm{~V}_{2}, \mathrm{P}_{1}=3 \mathrm{P}_{2}$ and both 1 and 2 behave ideally.
Calculate the ratio $\mathrm{n}_{1} / \mathrm{n}_{2}$.
A) $3: 1$
B) $2: 1$
C) $6: 1$
D) $1: 2$
E) $1: 6$

Answer: C
$\mathrm{n}_{1}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{RT} \mathrm{n}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{RT} \quad \mathrm{n}_{1} / \mathrm{n}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{P}_{2} \mathrm{~V}_{2}=3 \mathrm{P}_{2} 2 \mathrm{~V}_{2} / \mathrm{P}_{2} \mathrm{~V}_{2}=6 / 1$
22. The value of an equilibrium constant can vary with
A. Temperature
B. The reaction quotient (Q)
C. Concentration
D. Time
E. Pressure

Answer: A
23. For the following reaction:

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

How can the reaction be shifted to the left?
A) increase the pressure by changing the volume
B) remove PCl_{3}
C) add more PCl_{5}
D) remove Cl_{2}
E) decrease the pressure by changing the volume
\qquad Signature \qquad

Answer: A

24. Identify the primary the attractive forces between species in a sample of NaCl dissolved $\mathrm{H}_{2} \mathrm{O}$.
A) Hydrogen bonding, London dispersion, Dipole-Dipole, Dipole-Induced dipole
B) Hydrogen bonding, London dispersion, Dipole-Induced dipole, Charge-Induced dipole, Charge-Charge, Covalent bonds, Ionic bonds
C) Hydrogen bonding, London dispersion, Dipole-Induced dipole
D) Hydrogen bonding, London dispersion, Dipole-Dipole, Dipole-Induced dipole, ChargeInduced Dipole, Charge-Charge
E) London dispersion, Dipole-induced dipole, Charge-Induced dipole

Answer: D, the sodium is cationic and the chloride is anionic, so there are charge-charge interactions
25. The elements of group 5A, the nitrogen family, form compounds with hydrogen listed below: Boiling Point
$\mathrm{SbH}_{3} \quad-17^{\circ} \mathrm{C}$
$\mathrm{AsH}_{3} \quad-55^{\circ} \mathrm{C}$
$\mathrm{PH}_{3} \quad-87^{\circ} \mathrm{C}$
$\mathrm{NH}_{3} \quad-33^{\circ} \mathrm{C}$
The first three elements illustrate a trend where the boiling point decreases as the molecular weight decreases. However, ammonia $\left(\mathrm{NH}_{3}\right)$ does not follow the trend because
A) London dispersion forces
B) dipole-induced dipole
C) charge-charge (ionic) forces
D) hydrogen bonding
E) covalent forces

Answer: D
26. Consider the Bragg Equation. If the energy of a 400 nm beam of light is increased as it is reflected from two parallel mirrors (partially transparent) 800 nm apart, one might expect to see
A) An increase in the angle of diffraction (Θ)
B) A decrease in the angle of diffraction
C) No change in the diffraction pattern
D) Rainbows
E) The image of Elvis Presley

Answer: B

Energy up $=>$ wavelength down $=>$ angle Θ down; $n \lambda=2 d \sin \Theta$. A rainbow results from white light (a range of wavelengths).
27. Nitric oxide, an important pollutant in air, is formed from the elements nitrogen and oxygen at high temperatures, as when gasoline burns in an automobile engine. At $2000^{\circ} \mathrm{C}, K=0.01$ for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

Predict how the system will reach equilibrium at $2000^{\circ} \mathrm{C}$ if 0.4 moles of $\mathrm{N}_{2}, 0.1$ moles of O_{2}, and 0.008 moles of NO are placed in a 1.0 -liter container.
A) More information is necessary.
B) The concentration of NO will decrease; the concentrations of N_{2} and O_{2} will remain unchanged.
C) The system will remain unchanged.
D) The concentration of NO will decrease; the concentrations of N_{2} and O_{2} will increase.
\qquad
E) The concentration of NO will increase; the concentrations of N_{2} and O_{2} will decrease.

Answer: E
$\mathrm{Q}=\mathrm{P}^{2}{ }_{\mathrm{NO}} / \mathrm{P}_{\mathrm{O} 2} \mathrm{P}_{\mathrm{N} 2}=(0.008)^{2} /(0.4)(0.2)=0.0008$
$\mathrm{Q}<\mathrm{K}$, reaction will go to the right (toward products)
28. A cylinder is fitted with a movable piston containing an ideal gas. The pressure inside the cylinder is P_{i} and the volume is V_{i}. What is the new pressure in the system when the piston decreases the volume of the cylinder by half, at constant T ?
A) $2 V_{i} P_{i}$
B) $(1 / 4) P_{i}$
C) P_{i}^{2}
D) $2 P_{i}$
E) $(1 / 2) P_{i}$

Answer D
29. The vapor pressure of a solution depends on
A) the volume of the solution
B) the temperature
C) the volume of the vapor
D) the amount of non-volatile soluble contaminants
E) several of the factors listed above

Answer E (B and D are correct)
30. The following acids are listed in order of acid strength in water

$$
\mathrm{HI}>\mathrm{HNO}_{2}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HClO}>\mathrm{HCN}
$$

Which of the following is the weakest base?
A) I^{-}
B) NO_{2}^{-}
C) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
D) ClO^{-}
E) CN^{-}

Answer A (strongesgt acid => weakest conjugate base)

Section 3

31. Consider the diprotic ascorbic acid $\left(\mathrm{H}_{2} \mathrm{As}\right)$.

	K_{a}	$\mathrm{p} K_{\mathrm{a}}$
$\mathrm{H}_{2} \mathrm{As} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HAs}^{-}$	7.9×10^{-5}	4.10
$\mathrm{HAs}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{As}^{2-}$	1.6×10^{-12}	11.8

What major species are present at pH 4.10 ?
A) As^{2-} and HAs
B) HAs^{-}and $\mathrm{H}_{2} \mathrm{As}$
C) HAs^{-}only
D) $\mathrm{H}_{2} \mathrm{As}$ only
E) $\mathrm{H}_{2} \mathrm{As}$ and H^{+}

Answer: B
Chapter 8
32. During isothermal compression of an ideal monatomic gas, heat is released to the surroundings as the volume decreases at constant temperature. In this process, the energy of the gas
A) increases
B) decreases

Print Name
Signature \qquad
C) stays the same
D) cannot be determined from the information given

Answer: C
The energy of a perfect monatomic gas depends only on the temperature (KE=3/2RT).
33. Calculate ΔE for a system that releases 35 J of heat to the surroundings while 54 J of work is done on it.
A) -89 J
B) -19 J
C) 19 J
D) 89 J
E) 35 J

Answer: C
$\Delta E=q+w=-35 \mathrm{~J}+54 \mathrm{~J}=+19 \mathrm{~J}$
Chapter 9

Print Name \qquad Signature \qquad
34. Calculate the work for the expansion of an ideal gas from 3.0 to 6.0 L against an external pressure of 1.6 atm at constant temperature.
A) $4.8 \mathrm{~L} \cdot \mathrm{~atm}$
B) $-4.8 \mathrm{~L} \cdot \mathrm{~atm}$
C) $0.0 \mathrm{~L} \cdot \mathrm{~atm}$
D) $5.6 \mathrm{~L} \cdot \mathrm{~atm}$
E) $-1.9 \mathrm{~L} \cdot \mathrm{~atm}$

Answer: B
$w=-P \Delta V=-1.6$ atm $(6.0 \mathrm{~L}-3.0 \mathrm{~L})=-4.8 \mathrm{~L}-\mathrm{atm}$
Chapter 9
Consider the following process carried out on 1.0 mol of a monatomic ideal gas at constant pressure:
Start: (3.00 atm, 20.0 L)
End: (3.00 atm, 50.0 L$)$.
35. Calculate the work, w.
A) $-90 \mathrm{~L} \cdot \mathrm{~atm}$
B) $90 \mathrm{~L} \cdot \mathrm{~atm}$
C) $-30 \mathrm{~L} \cdot \mathrm{~atm}$
D) $30 \mathrm{~L} \cdot \mathrm{~atm}$
E) $0 \mathrm{~L} \cdot \mathrm{~atm}$

Answer: A
$w=-P \Delta V=-3 \mathrm{~atm}(50 \mathrm{~L}-20 \mathrm{~L})=-90 \mathrm{~L}-\mathrm{atm}$
Chapter 9
36. Calculate the heat, q.
A) $226 \mathrm{~L} \cdot \mathrm{~atm}$
B) $-226 \mathrm{~L} \cdot \mathrm{~atm}$
C) $135 \mathrm{~L} \cdot \mathrm{~atm}$
D) $-135 \mathrm{~L} \cdot \mathrm{~atm}$
E) none of these

Answer: A
$\mathrm{T}(\mathrm{A})=\mathrm{PV} / \mathrm{nR}=(3 \mathrm{~atm})(20 \mathrm{~L}) /\left[(1.0 \mathrm{~mol})\left(0.082 \mathrm{~L}^{2}-\mathrm{atm} \mathrm{mol}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)\right]=731 \mathrm{~K}$
$\mathrm{T}(\mathrm{B})=\mathrm{PV} / \mathrm{nR}=(3 \mathrm{~atm})(50 \mathrm{~L}) /\left[(1.0 \mathrm{~mol})\left(0.082 \mathrm{~L}^{2}\right.\right.$-atm $\left.\left.\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)\right]=1830 \mathrm{~K}$
$\Delta T=1099 \mathrm{~K}$
$\mathrm{q}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=(1 \mathrm{~mol})\left(5 / 2 \mathrm{R} \mathrm{J} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}\right)(101 \mathrm{~J} / \mathrm{L}-\mathrm{atm})^{-1}(1099 \mathrm{~K})$ $=(5 / 2 \times 8.31) 1099 / 101=226$ L-atm
37. As a cold brick (the system) spontaneously warms in a hot pool of water (the surroundings), the [entropy (S) / free energy (G) / enthalpy (H)] of the brick
A) decreases / decreases /increases
B) increases / decreases / increases
C) decreases / increases / increases
D) decreases / increases / decreases
E) increases / increases / increases

Answer: B
Chapter 10
38. As a cold brick (the system) spontaneously warms in a hot pool of water (the surroundings), the [entropy (S) / enthalpy (H)] of the surroundings
A) decreases / increases
B) increases / increases
C) decreases / increases
D) decreases / decreases

Print Name
Signature \qquad
E) increases / increases

Answer: D
Chapter 10
39. In a reaction where a diatomic molecule (for example O_{2}) spontaneously forms from its atoms at standard temperature and pressure, what are the signs of $\Delta H, \Delta S$, and ΔG, respectively?
A) $+\quad+\quad+$
B) $+\quad-\quad-$
C) $-\quad+\quad+$
D) - $\quad+$
E) - - -

Answer: E
Chapter 10

Print Name \qquad Signature \qquad
40. Consider the spontaneous freezing of liquid water at $-10^{\circ} \mathrm{C}$. For this process what are the signs for $\Delta H, \Delta S$, and ΔG, respectively?
A) $+\quad-0$
B) $-\quad+0$
C) $-\quad+\quad-$
D) $+\quad-\quad-$
E) - - -

Answer: E
Chapter 10
41. This graph illustrates the relationship between $\Delta \mathrm{G}^{\mathrm{o}}{ }_{\text {reaction }}$ and absolute temperature. For this reaction, one can conclude that:

A) $\Delta \mathrm{H}^{\circ}>0, \Delta \mathrm{~S}^{\circ}>0$
B) $\Delta \mathrm{H}^{\circ}<0, \Delta \mathrm{~S}^{\circ}>0$
C) $\Delta \mathrm{H}^{\circ}>0, \Delta \mathrm{~S}^{\circ}<0$
D) $\Delta \mathrm{H}^{\circ}<0, \Delta \mathrm{~S}^{\circ}<0$
E) The signs of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ cannot be determined.

Answer A
42. A hot metal block ($85 \mathrm{~g}, 97.9 \mathrm{C}$) is added to an insulating container holding $250 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at 22.3
C. If the final temperature measured is 27.4 C , then what is the specific heat of the metal?
A) $19.7 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$
B) $0.89 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$
C) $0.45 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$
D) $0.21 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$
E) $1.77 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$

Answer: B
$(250 \mathrm{~g})(4.18 \mathrm{~J} / \mathrm{g}-\mathrm{K})(27.4-22.3)=85\left(\mathrm{C}_{\mathrm{m}}\right)(97.9-27.4)$
$\mathrm{C}_{\mathrm{m}}=0.9$
43. For ammonia $\left(\mathrm{NH}_{3}\right), K_{\mathrm{b}}$ is 1.8×10^{-5}. The buffering capacity of a 1 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is at a maximum at a pH of
A) 4.7
B) 7.2
C) 12.2
D) 9.3
E) none of these

Answer: D
$p K_{b}=-4.75$
$\mathrm{pK}_{\mathrm{a}}=9.3$, buffering capacity is max when $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
Chapter 8

Print Name \qquad Signature \qquad
44. For nitrous acid $\left(\mathrm{HNO}_{2}\right) K_{\mathrm{a}}=4.0 \times 10^{-4}$. Calculate the pH of $0.25 \mathrm{M} \mathrm{HNO}_{2}$.
A) 2.00
B) 2.30
C) 2.70
D) 3.70
E) 4.31

Answer: A
45. Consider a solution with both he following systems:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \quad \mathrm{p} K_{\mathrm{a}}=6.4 \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}^{+} \quad \mathrm{p} K_{\mathrm{a}}=7.2
\end{aligned}
$$

At pH 6.4 , which one of the following are true?
A) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]>\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]>\left[\mathrm{HPO}_{4}{ }^{2-}\right]$
B) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]>\left[\mathrm{HPO}_{4}{ }^{2-}\right]$
C) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{HPO}_{4}{ }^{2-}\right]>\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$
D) $\left[\mathrm{HCO}_{3}{ }^{-}\right]>\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ and $\left[\mathrm{HPO}_{4}{ }^{2-}\right]>\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$
E) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]>\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{HPO}_{4}{ }^{2-}\right]>\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$

Answer: B

Section 4

46. For the decomposition of nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ to N_{2} and O_{2} :

Rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}\right]^{2}$. Several mechanisms are proposed:

A.	$\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{O}$	B.	$\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}+\mathrm{NO}$
	$\mathrm{N}_{2} \mathrm{O}+\mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$		$\mathrm{~N}_{2} \mathrm{O}+\mathrm{N}+\mathrm{NO} \rightarrow \mathrm{N}_{3}+\mathrm{O}_{2}$
	$2 \mathrm{~N}_{3} \rightarrow 3 \mathrm{~N}_{2}$		

Which of the mechanisms above is most likely to be correct?
A. Mechanism A.
B. Mechanism B.
C. Mechanism C.
D. Mechanism D.
E. None of these mechanisms are consistent with the experimental rate law.

Answer: C

47. The rate of a reaction can change with
A. Temperature.
B. The addition of a catalyst or enzyme.
C. Reactant concentrations.
D. None of the above (a-c).
E. All of the above $(a-c)$.

Answer: E

Print Name
Signature \qquad
48. The rate of disappearance of ozone in the reaction $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$ is $9.0 \times 10^{-3} \mathrm{~atm} \mathrm{~s} \mathrm{~s}^{-1}$. What is the rate of appearance of O_{2} ?
A. $\quad 1.3 \times 10^{-2} \mathrm{~atm} \mathrm{~s}^{-1}$
B. $\quad 9.0 \times 10^{-3} \mathrm{~atm} \mathrm{~s}^{-1}$
C. $\quad 6.0 \times 10^{-3} \mathrm{~atm} \mathrm{~s}^{-1}$
D. $3.0 \times 10^{-5} \mathrm{~atm} \mathrm{~s}^{-1}$
E. $\quad 2.7 \times 10^{-5} \mathrm{~atm} \mathrm{~s}^{-1}$

Answer: A
$(3 / 2) 9.0 \times 10^{-3}=1.3 \times 10^{-2} \mathrm{~atm} / \mathrm{s}$
49. The balanced equation for the reaction of bromate with bromide to produce bromine $\left(\mathrm{Br}_{2}\right)$ in acidic solution is given by:

$$
\mathrm{BrO}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

When $\mathrm{d}\left[\mathrm{Br}^{-}\right] / \mathrm{dt}$ is $-1.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{~s}^{-1}$, what is $\mathrm{d}\left[\mathrm{Br}_{2}\right] / \mathrm{dt}$?
A. $-0.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
B. $+0.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
C. $-1.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
D. $+1.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
E. $\quad+1.7 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

Answer B:
$(3 / 5)\left(1.0 \times 10^{-3}\right)=0.6 \times 10^{-3}$

Print Name \qquad Signature \qquad
50. Which is correct (see graph)
A. i is the reactant, iii is a transition state, v is the product.
B. v is the reactant, iv is the first transition state, iii is an intermediate, $i i$ is the second transition state, i is the product.
C. iiii is the reactant, ii is the one transition state, iv is another transition state, i and v are products.
D. i is the reactant, ii is the first intermediate, iii is the second intermediate, iv is the third intermediate, v is the product.
E. i is the reactant, ii is the first transition state, iii is the intermediate, iv is the second transition state, v is the product.
Answer: E

51. In the reaction coordinate graph above
A. 1 is $\Delta \mathrm{G}^{\circ}$ reaction, 2 is $\Delta \mathrm{G}^{\circ \ddagger}{ }_{\text {forward first step }}, 4$ is $\Delta \mathrm{G}^{\circ \ddagger}$ forward second step
B. 1 is $\Delta \mathrm{G}^{\circ}{ }_{\text {reaction }}, 2$ is $\Delta \mathrm{G}^{\circ \dagger}{ }_{\text {forward first step }}, 7$ is $\Delta \mathrm{G}^{\circ \ddagger}$ forward second step
C. 1 is $\Delta \mathrm{G}^{\circ}{ }_{\text {reaction }}, 3$ is $\Delta \mathrm{G}^{\circ}{ }_{\text {forward first step }}, 4$ is $\Delta \mathrm{G}^{\circ \ddagger}{ }_{\text {forward second step }}$
D. 6 is $\Delta \mathrm{G}^{\circ}{ }_{\text {reaction }}, 2$ is $\Delta \mathrm{G}^{\circ \dagger}$ forward first step, 4 is $\Delta \mathrm{G}^{\circ \dagger}$ forward second step
 Answer A:
52. From the reaction coordinate graph above
A. $\mathrm{k}_{\text {reverse second step }}>\mathrm{k}_{\text {forward first step }}>\mathrm{k}_{\text {forward second step }}$
B. $\mathrm{k}_{\text {forward first step }}>\mathrm{k}_{\text {forward second step }}>\mathrm{k}_{\text {reverse second step }}$
C. $\mathrm{k}_{\text {forward second step }}>\mathrm{k}_{\text {forward first step }}>\mathrm{k}_{\text {reverse first step }}$
D. $\mathrm{k}_{\text {forward first step }}>\mathrm{k}_{\text {forward second step }}>\mathrm{k}_{\text {reverse first step }}$
E. Cannot be determined

Answer C : $\mathrm{k}_{\text {reverse second step }}$ is greater than all other k because the $\Delta \mathrm{G}^{\circ \ddagger}$ (iii on graph) for that step is smallest, etc.
53. From the reaction coordinate graph above
A. $\mathrm{K}=1$
B. $\mathrm{K}>1$
C. $\mathrm{K}<1$
D. K cannot be determined

Answer B: Well this makes no sense as written does it? It should have been $K=1, K>1, K<1$, not $K=0$, $\mathrm{K}>0, \mathrm{~K}<0$ (is now fixed). Everyone gets this one right.
54. A moderately spontaneous reaction, with a small forward driving force
A. is necessarily a slow forward reaction.
B. is necessarily a fast forward reaction.
C. is necessarily a slow reverse reaction.
D. is necessarily a fast reverse reaction.
E. None of these are correct

Print Name \qquad Signature \qquad
Answer: E. Don't confuse kinetics and thermodynamics
55. The following data were obtained for the reaction of NO with O_{2}. Concentrations are in M and rates are in $\mathrm{M} \mathrm{s}^{-1}$.

$[\mathrm{NO}]_{0}$	$\left[\mathrm{O}_{2}\right]_{0}$	Initial Rate
1×10^{18}	1×10^{18}	2.0×10^{16}
2×10^{18}	1×10^{18}	8.0×10^{16}
3×10^{18}	1×10^{18}	18.0×10^{16}
1×10^{18}	2×10^{18}	4.0×10^{16}
1×10^{18}	3×10^{18}	6.0×10^{16}

Which of the following is the rate law for this reaction?
A. \quad Rate $=k[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$
B. \quad Rate $=k[\mathrm{NO}]\left[\mathrm{O}_{2}\right]^{2}$
C. \quad Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
D. Rate $=k[\mathrm{NO}]^{2}$
E. Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]^{2}$

Answer: C

Print Name \qquad Signature \qquad

Extra Credit: The following questions are worth just two points ($\mathbf{2} \mathbf{~ p t) ~ e a c h ! ~}$

Consider the gas-phase reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Standard gas phase thermodynamic information is available:
$\begin{array}{ll}\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2}\right)=0.0 & \mathrm{~S}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2}\right)=131 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \\ \Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left(\mathrm{O}_{2}\right)=0.0 & \mathrm{~S}_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)=205 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \\ \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=-242 \mathrm{~kJ} / \mathrm{mol} & \mathrm{S}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=189 \mathrm{~J} / \mathrm{mol}-\mathrm{K}\end{array}$
56. What is $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{r}}$ for this reaction?
A) $+121 \mathrm{~kJ} / \mathrm{mol}$
B) $-121 \mathrm{~kJ} / \mathrm{mol}$
C) $-242 \mathrm{~kJ} / \mathrm{mol}$
D) $+242 \mathrm{~kJ} / \mathrm{mol}$
E) Cannot be determined from the information given.

Answer: C
57. What is $\Delta \mathrm{S}_{\mathrm{r}}^{\circ}$ for this reaction?
A) - $44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
B) $+44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
C) $+147 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
D) $-147 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
E) Cannot be determined.

Answer: A
189-(1/2)205-131 = -44
58. What is $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{r}}$ for this reaction at 298 K ?
A) $-255 \mathrm{~kJ} / \mathrm{mol}$
B) $+229 \mathrm{~kJ} / \mathrm{mol}$
C) $-229 \mathrm{~kJ} / \mathrm{mol}$
D) $+255 \mathrm{~kJ} / \mathrm{mol}$
E) Cannot be determined.

Answer: C
$-242-(298)(-44 / 1000)=-229$
59. For this reaction, at about what temperature is $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{r}}=0$?
A) 5.5 K
B) 5500 K
C) 300 K
D) 5200 K
E) Cannot be determined.

Answer: B
$\mathrm{T}=242 / .044=5500 \mathrm{~K}$
60. For this reaction, what is the approximate value of $\ln \left(\mathrm{K}_{\text {eq }}\right)$ at $\mathrm{T}=1000 \mathrm{~K}$?
A) 24
B) 29
C) 34
D) -24
E) Cannot be determined.

Answer: A
$-242-1000(-0.044)=-198=-\ln \left(\mathrm{K}_{\mathrm{eq}}\right) / \mathrm{RT}$
$\ln \left(\mathrm{K}_{\mathrm{eq}}\right)=(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K})(1000)(198 \mathrm{~kJ} \mathrm{~mol})=23.8$
61. The maximum work (in absolute value) obtainable from this reaction at 1000 K , and $\mathrm{Q}=0.0025$ (Q is the reaction quotient) is approximately:
A) $0 \mathrm{~kJ} / \mathrm{mol}$
B) $150 \mathrm{~kJ} / \mathrm{mol}$
C) $250 \mathrm{~kJ} / \mathrm{mol}$
D) $200 \mathrm{~kJ} / \mathrm{mol}$
E) Cannot be determined.
Answer: C

Print Name
Signature
$\mathrm{w}=-198000+8.3^{*} 1000 \ln (0.0025)=-198000 \mathrm{~J} / \mathrm{mol}-50000 \mathrm{~J} / \mathrm{mol}=-248 \mathrm{~kJ} / \mathrm{mol}$
62.
A) This is Test Form "C". My Scantron is filled in completely and correctly.
B) This is Test Form "D". My Scantron is filled in completely and correctly.
C) My Scantron is not filled in completely or correctly probably because I did not bother to bubble in my GT ID (minus 10 points for this answer).
\qquad Signature \qquad

\qquad

$\begin{gathered} (z 92) \\ \text { un!ưarmeT } \\ \text { I/T } \end{gathered}$	$\begin{aligned} & \hline(6 \mathrm{SZ}) \\ & \text { unylpqon } \\ & \mathbf{O N} \end{aligned}$		$\begin{gathered} (\angle S Z) \\ \text { tunnura } \\ \mathbf{U I}_{\mathbf{H}} \end{gathered}$	$\begin{gathered} (z \varsigma z) \\ \text { umpurasü } \\ \text { SG } \end{gathered}$			$\begin{aligned} & (\angle \downarrow Z) \\ & \text { unum } \\ & \mathbf{U W} \end{aligned}$	$\begin{gathered} (\varepsilon\llcorner\tau) \\ \text { untpuaw } \\ \mathbf{U I V} \end{gathered}$	（ t って） untuoyntd n_{d}		$\begin{gathered} 6820{ }^{68 \varepsilon Z} \\ \text { umuwnen } \\ \bigcap \end{gathered}$						
E0I	Z0I	I0I	00 I	66	86	L6	96	S6	ヤ6	E6	26	I6	06				
$\angle 96^{\circ} \downarrow \angle I$ типमझวит n7	t0 $0^{\circ} \varepsilon L I$ tumqqu\＃， $9 \mathbf{}$		$\begin{gathered} 9 Z \angle 9 I \\ \text { unuqu } \\ . \mathbf{I}^{\prime} \end{gathered}$				$\mathbf{P D}$	t96 IS I umudomg nH	9ع0 0 SI umuretus UIS		$\begin{gathered} \substack{\text { trittid } \\ \text { unnumpoon } \\ \mathbf{p N}} \end{gathered}$		9lloti ипйว 0）				
IL	0 L	69	89	$L 9$	99	¢9	†9	E9	Z9	［9	09	6S	8S				
						（LLZ）	（zL乙）	（692）		$\begin{gathered} (\mathrm{S} 92) \\ \text { umusser } \end{gathered}$	$\begin{gathered} (z 9 z) \\ \text { uпич } \end{gathered}$	$\begin{gathered} (\text { (£9Z) } \\ \text { umutioquas } \end{gathered}$	$\begin{gathered} (z 92) \\ \text { unnumqa } \end{gathered}$			$\begin{aligned} & \text { (9ZZ) } \\ & \text { umppeq } \end{aligned}$	$\begin{gathered} (\varepsilon \tau Z) \\ \text { unnurux } \end{gathered}$
									＋W	SH	पЯ	\％S	9 O	JX	गV	18	$\mathbf{I H}_{H}$
				† I I	\mathcal{E} I I	ZII	I I I	0 I I	60 I	80 I	LOI	90I	SOI	†0 I	68	88	L8
$\begin{aligned} & \text { (zzz) } \\ & \text { uopez } \end{aligned}$	$\begin{gathered} \text { (0IZ) } \\ \text { دuपpesy } \end{gathered}$	$\begin{gathered} (60 z) \\ \text { wunnuopod } \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \varepsilon 08680 z \\ \text { पnnuxs!g } \\ \hline \end{array}$	$\begin{gathered} \text { Z'LOZ } \\ \text { perT } \end{gathered}$		$\begin{aligned} & 6 \mathrm{~S}^{\circ} 002 \\ & \text { Smose } \end{aligned}$	$\underset{\text { ploo }}{\substack{\text { SS996. } \\ \hline}}$	$\begin{aligned} & 8 \angle 0^{\circ} \varsigma 6 \mathrm{I} \\ & \text { unumpld } \end{aligned}$		$\begin{aligned} & \text { £Z'06I } \\ & \text { unnutuso } \end{aligned}$	$\begin{gathered} \text { LOZ.98I } \\ \text { ununuryd } \end{gathered}$		$\begin{gathered} \text { 6Lt608I } \\ \text { tunferuri } \end{gathered}$	$\begin{aligned} & 6+8 \angle I \\ & \text { unnuy } \end{aligned}$	$\begin{aligned} & \text { SS06.8气I } \\ & \text { unury } \end{aligned}$	$\underset{\substack{\angle Z \varepsilon \\ \text { unuweg }}}{ }$	$\begin{array}{\|c\|} \hline \text { StS06 } \\ \text { umiso } \end{array}$
UX	1V	$\mathrm{O}_{\mathbf{d}}$	Ig	9 d	IL	${ }_{\mathbf{O}}^{\mathbf{O}}$	nV	＋d	．II	SO	$\boldsymbol{\theta H}$	\mathbf{M}	EL	JH	${ }^{1}$ T	$\mathbf{8 g}$	SD
98	S8	t8	E8	28	I8	08	6 L	8L	LL	92	SL	tL	$\mathcal{E L}$	ZL	LS	9S	SS
$\underset{\substack{62 \text { ºurx } \\ \text { нои }}}{ }$	$\underset{\text { әu!poI }}{\text { Ltt06. }}$		09 ${ }^{\text {＇}}$ IZI кпотйй	$\underset{\mathrm{w} \cdot \mathrm{~L}}{0 \mathrm{I} \angle \mathrm{I} I \mathrm{I}}$	$\underset{\substack{818^{\circ} \dagger \text { II } \\ \text { unpuit }}}{ }$	$\begin{aligned} & \text { IIfZII } \\ & \text { unuruper } \end{aligned}$	$\begin{gathered} \text { 2898 LOI } \\ \text { ranlis } \end{gathered}$	$\begin{aligned} & 2+901 \\ & \text { um!perfed } \end{aligned}$	$\underset{\text { unuporyd }}{0 S 506 \text { I }}$	$\begin{gathered} \angle 0 T O I \\ \text { unutuquma } \end{gathered}$		$\begin{gathered} \pm 6 \mathrm{S6} \\ \text { tunurapq } 40 \mathrm{~N} \end{gathered}$		um！uosi！ $\underset{\text { tで } 16}{\text { tumaonz }}$	$\begin{gathered} \text { S8S06 } 88 \\ \text { unum } \Lambda \end{gathered}$	$\begin{gathered} 29.28 \\ \text { unumons } \end{gathered}$	$8 \angle 9 \operatorname{li}^{\circ} \mathrm{C8}$ utump！quy
$\boldsymbol{\partial X}$	I	$\boldsymbol{\theta} \mathbf{L}$	9S	US	III	p	OV	Pd	प【	HX	0」	OL	qN	I^{\prime}	\}	． \mathbf{S}	98
tS	$\mathcal{E S}$	ZS	IS	OS	$6 t$	$8 t$	$L D$	9t	St	tt	$\varepsilon \downarrow$	て \downarrow	It	$0 \downarrow$	$6 \mathcal{E}$	$8 \mathcal{E}$	LE
$08 \cdot \varepsilon 8$ uoldiry	t06． 6 L วuturorg	$\begin{aligned} & 968 \mathrm{~L} \\ & \text { unutures } \end{aligned}$		$\begin{gathered} \hline \text { I9 } 9^{\circ} \mathrm{ZL} \\ \text { unnueura) } \end{gathered}$	$\begin{aligned} & \text { uxLL } 69 \\ & \text { unfer } \end{aligned}$	$6 \varepsilon \varsigma 9$ эा!z	$\begin{gathered} 9 t \zeta \text { ' } \varepsilon 9 \\ \text { دaddoう } \end{gathered}$		$\begin{gathered} 002 \varepsilon \varepsilon 6.8 \mathrm{~S} \\ \text { मघq०う } \end{gathered}$	St8． SS Hor	$6+08 \varepsilon 6 \mathrm{ts}$ әรангะтию	L966．IS unituorm	$\begin{aligned} & \text { SIt6 OS }^{\text {umitperw }} \end{aligned}$		$\begin{gathered} \text { 0I6S56.tt } \\ \text { unupures } \end{gathered}$	$\begin{aligned} & 8 \angle 000 t \\ & \text { cunpres } \end{aligned}$	$\begin{aligned} & \text { E860.6乏 } \\ & \text { unussevod } \end{aligned}$
IH	Ig	$\boldsymbol{\theta} \mathrm{S}$	SV	0 O	$\boldsymbol{1}$	$\mathbf{U}_{\mathbf{Z}}$	nJ	IN	0 O	OH_{H}	$\mathbf{U W}$	IJ	人	！	0S	b．	Y
$9 \mathcal{L}$	$\varsigma \mathcal{E}$	$\dagger \mathcal{E}$	$\mathcal{E} \mathcal{L}$	乙¢	IE	$0 \mathcal{E}$	62	87	$L Z$	97	sZ	七乙	\mathcal{E}	こて	IZ	02	6 I
				$\begin{aligned} & \text { SS808z } \\ & \text { uovirs } \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \varepsilon S I 8692 \\ \text { unumumiry } \\ \hline \end{array}$												$\underset{\substack{0 \angle L 686 \\ \text { tunpos }}}{ }$
IV	ID	S	d	IS	IV											OLW	$\mathbf{E N}_{\mathbf{N}}$
8 I	LI	9 I	SI	¢ I	\mathcal{E} I											Z I	I I
				$\begin{gathered} \text { LOLO ZI } \\ \text { uoque } \end{gathered}$	$\begin{gathered} \text { IT8001 } \\ \text { uooog } \end{gathered}$												
$\boldsymbol{\partial N}$	H	0	N	O	g											$\boldsymbol{\partial g}$	！ 7
0 I	6	8	L	9	ς											†	\mathcal{E}
																	$\begin{aligned} & 76 L 00 \mathrm{I} \\ & \mathrm{u} 2 \mathrm{o} \circ \mathrm{op} \kappa_{\mathrm{H}} \end{aligned}$
$\boldsymbol{\partial H}$																	H
τ																	I

