Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams

Signature

This test is <u>closed</u> note/book. Two 8.5 x 11 handwritten crib sheets (two sided) are permitted.

Use a #2 pencil. Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Please turn off your cell phone. Cell phones may not be used as calculators.

- Write your name on this exam. Complete the Scantron card as shown below. You must bubble in your ID number, write in your section number and identify your Test Form (see top of this page). Scantron errors and omissions are punishable by point deductions.
- When you take the exam, bubble in the scanton form *and* circle your answers on this exam. You must hand in both the scantron and the exam.
- A total of three hours is allotted for the exam. There are 55 questions. Each is worth five points. In addition there are seven extra credit questions at the end. Answer every question. There is no penalty for guessing.

Circle Your Section Number (or minus 5 points)

		· ·
A1	M 2-3PM	CoC 52
A2	M 2-3PM	CoC 53
A3	M 2-3PM	MSE 1201A
A4	M 2-3PM	MSE 1222
A5	M 2-3PM	MSE 1224
B1	M 3-4PM	CoC 52
B2	M 3-4PM	CoC 53
B3	M 3-4PM	MSE 12101A
B4	M 3-4PM	MSE 1222
B5	M 3-4PM	MSE 1224

Final Test Form C Chem 1310 Fall 2008 12/11/2008 Dr. W	illiams
--	---------

Signature

Section 1

- 1. Which of the following statements about salty water (NaCl_{aq}) is false?
 - A) It has a relatively high boiling point.
 - B) Boiling it disrupts hydrogen bonds.
 - C) Boiling it disrupts London dispersion forces.
 - D) It readily dissolves CH₃CH₃.
 - E) It has a high molar heat capacity.

Answer: D, Chapter 4

2. For the reaction of 3.0 g hydrogen with 21 g oxygen, calculate the theoretical yield of water (H_2O).

$$H_2 + 1/2O_2 \rightarrow H_2O$$

- A) 54 grams of H_2O
- B) 12 grams of H_2O
- C) 46 grams of H_2O
- D) 23 grams of H_2O
- E) 14 grams of H_2O

Answer: D, Chapter 3 H2: (3g)(2g/mol)⁻¹= 1.5 mol O2: (21g)(32g/mol)⁻¹= 0.65 mol 1.5 mol H2 will consume 0.75 mole O2; O2 is limiting H₂O; (0.65 mol)(18g/mol)(2) = 23g

- 3. What is the total volume after adding water to a 20.0 mL solution of 0.96 M NaCl(aq) to give a final solution of 0.480 M (aq)?
 - A) 8.1 mL
 - B) 40 mL
 - C) 10 mL
 - D) 36 mL
 - E) 20 mL
- Answer: B, Chapter

 $M_1V_1=M_2V_2$; (20ml)(0.95mol/L)/0.48mol/L = 39.6 ml

- 4. Which of the following statements about a nitrogen atom is false?
 - A) The electrons occupy discrete energy levels.
 - B) The primary quantum number of an electron (n) can be increased by the absorption of light.
 - C) Light is absorbed and emitted at discrete wavelengths
 - D) Light is absorbed and emitted at discrete frequencies
 - E) None of the statements above are false

Answer: E, Chapter 12

Signature _

- 5. Which of the following statements about electromagnetic radiation (in a vacuum) is false?
 - A) The photon energy specifies the wavelength (i.e., if you know the wavelength you know the energy).
 - B) The photon frequency specifies the wavelength.
 - C) The photon energy specifies the amplitude.
 - D) The photon frequency does not specify the phase.
 - E) The wavelength emitted by an atom is determined by differences in energy levels.

Answer: C, Chapter 12

- 6. Which of the following statements about atomic orbitals is false?
 - A) An orbital can hold only one electron.
 - B) Orbitals do not have precise boundaries
 - C) Hydrogen has fewer occupied orbitals than lithium.
 - D) An orbital is not an orbit.
 - E) The number of probability nodes increases with increasing n (primary quantum number)

Answer: A, Chapter 12

- 7. Which of the following frequencies corresponds to electromagnetic radiation with the greatest energy per photon?
 - A) $3.00 \times 10^{13} \text{ s}^{-1}$
 - B) $8.50 \times 10^{20} \text{ s}^{-1}$
 - C) $4.12 \times 10^5 \text{ s}^{-1}$
 - D) $9.12 \times 10^{12} \text{ s}^{-1}$
 - E) $3.20 \times 10^9 \text{ s}^{-1}$

Answer: B, Chapter 12, E=hv

8. Which are possible quantum numbers of the unpaired electron of a fluorine atom? *(hint: l=0=>s; l=1=>p; l=2=>d; l=3=>f)*

п l $m_{(l)}$ $m_{(s)}$ A) 1 1 0 $-\frac{1}{2}$ B) 2 0 0 $\frac{1}{2}$ C) 2 1 -1 $\frac{1}{2}$ D) 2 1 3 $-\frac{1}{2}$ E) 4 2 0 $\frac{1}{2}$

Answer: C, Chapter 12

Signature

9. What is the correct electron arrangement of a neutral nitrogen atom in the ground state?

Answer: A, Chapter 12

- 10. Which of the following molecules has a net dipole moment?
 - A) CBr₄
 - B) NF₃
 - C) CO₂
 - D) BI_3
 - E) NH_4^+

Answer: B, Chapter 13

- 11. Which bond has the smallest dipole moment?
 - A) H-F
 - B) C-N
 - C) N-N
 - D) C-O
 - E) C-F

Answer: C, Chapter 13

- 12. Which of the following statements is incorrect?
 - A) Ionic bonding results from the transfer of one or more electrons from one atom to another.
 - B) A bond dipole indicates the unequal distribution of electrons around the atoms in the bond.
 - C) The electrons in a polar bond are found nearer to the more electronegative atom.
 - D) A molecule with very polar bonds necessarily has a net dipole moment.
 - E) Linear molecules can have a net dipole moment.

Answer: D, Chapter 13

Signature

Fall 2008

- 13. The shape of PO_4^{3-} is
 - A) Square Pyramidal
 - B) Tetrahedral
 - C) Truncated Octahedral
 - D) Distorted Tetrahedral
 - E) Seriously Bent

Answer: B, Chapter 13

- 14. Phosphorus has the molecular formula P_4 while sulfur has the molecular formula S_8 . How many grams of phosphorus contain the same number of molecules as 4.61 g of sulfur?
 - A) 2.2 g
 - B) 3.2 g
 - C) 6.2 g
 - D) 6.4 g
 - E) none of these

Answer: A, Chapter 3 4 $61g/(8x32 \ 1g/mol) = 0.01$

4.61g/(8x32.1g/mol) = 0.018 mol S8; (0.018mol)(4x31g/mol) = 2.2g

15. Which one of these structures is incorrect (this image will be projected during the exam?

Answer: D

Section 2

16. Consider three flasks at 1000K. Flask A contains 1 mole of He at 0.02 atm, flask B contains 1 mole of Ne at 0.04 atm, and flask C contains 1 mole of Xe at 0.06 atm. Assume that all three gases are ideal.

In which flask do the gas particles have the highest average kinetic energy?

- A) insufficient information
- B) flask A
- C) flask B
- D) flask C
- E) All are the same

Answer: E (KE=3/2RT)

17. A sample of 106 g of butanetriol, a non-dissociating, non-volatile liquid with the formula $C_4H_{10}O_3$, is dissolved in 582 g water. What is the vapor pressure of this solution at 100°C? A) 684 torr B) 760 torr

- C) 76 torr
- C) /0 lor
- D) 23 torr
- E) 738 torr

Answer: E

$$\begin{split} n_{H2O} &= 582 g / (18 g / mol) = 32.3 \text{ mol} \\ n_{butanetriol} &= 106 g / (106 g / mole) = 1.0 \text{ mol} \\ X_{H2O} &= n / (n+1) = 32.3 / 33.3 = 0.97 \\ P_{H2O} &= X_{H2O} P^{\circ}_{H2O} = 0.97 (760 \text{ torr}) = 738 \text{ torr} \end{split}$$

18. For the reaction:

$$aA(g) + bB(g) \iff cC(g) \Delta H^{\circ}=-32kJ/mol$$

with a = 1, b=1 and c=1. An increase in total pressure (at constant Temperature).

- A) increases the number of moles of A
- B) decreases the number of moles of A
- C) does not change the number of moles of A
- D) has undetermined effect on the number of moles of A

Answer: B

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams

Signature

19. For the reaction:

 $aA(g) + bB(g) \iff cC(g) \Delta H^\circ = -32kJ/mol$

with a = 1, b=1 and c=1. An increase in Temperature (at constant pressure).

- A) increases the number of moles of A
- B) decreases the number of moles of A
- C) does not change the number of moles of A
- D) has undetermined effect on the number of moles of A

Answer: A

20. Four identical 1.0-L flasks contain the gases H₂, Cl₂, CH₄, and NH₃, each at 0°C and 0.1 atm pressure. Assume that all gases behave ideally.

Which gas has the greatest number of molecules?

A) NH₃

- B) H₂
- C) Cl₂
- $D) CH_4$
- E) all the same

Answer: E

21. Consider two samples of helium (1 and 2) at the same temperature in separate containers. $V_1 = 2V_2$, $P_1 = 3P_2$ and both 1 and 2 behave ideally. Calculate the ratio n_1/n_2 .

- A) 3:1B) 2:1
- $\begin{array}{ccc} \mathbf{B} & 2:1 \\ \mathbf{C} & 6:1 \end{array}$
- C) 6:1
- D) 1:2E) 1:6
- Answer: C

$n_1 = P_1 V_1 / RT \quad n_2 = P_2 V_2 / RT$

 $n_1/n_2 = P_1V_1/P_2V_2 = 3P_22V_2/P_2V_2 = 6/1$

- 22. The value of an equilibrium constant can vary with
 - A. Temperature
 - B. The reaction quotient (Q)
 - C. Concentration
 - D. Time
 - E. Pressure

Answer: A

23. For the following reaction:

 $PCl_{5}(g) \implies PCl_{3}(g) + Cl_{2}(g)$

How can the reaction be shifted to the left?

- A) increase the pressure by changing the volume
- B) remove PCl_3
- C) add more PCl₅
- D) remove Cl_2
- E) decrease the pressure by changing the volume

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams
Print Name		Signatu	ure		

Answer: A

- 24. Identify the primary the attractive forces between species in a sample of NaCl dissolved H_2O .
 - A) Hydrogen bonding, London dispersion, Dipole-Dipole, Dipole-Induced dipole
 - B) Hydrogen bonding, London dispersion, Dipole-Induced dipole, Charge-Induced dipole, Charge-Charge, Covalent bonds, Ionic bonds
 - C) Hydrogen bonding, London dispersion, Dipole-Induced dipole
 - D) Hydrogen bonding, London dispersion, Dipole-Dipole, Dipole-Induced dipole, Charge-Induced Dipole, Charge-Charge
 - E) London dispersion, Dipole-induced dipole, Charge-Induced dipole

Answer: D, the sodium is cationic and the chloride is anionic, so there are charge-charge interactions

- 25. The elements of group 5A, the nitrogen family, form compounds with hydrogen listed below: Boiling Point
 - SbH₃ -17° C
 - $AsH_3 -55^\circ C$
 - $PH_3 \qquad -87^\circ \ C$
 - NH₃ -33° C

The first three elements illustrate a trend where the boiling point decreases as the molecular weight decreases. However, ammonia (NH_3) does not follow the trend because

- A) London dispersion forces
- B) dipole-induced dipole
- C) charge-charge (ionic) forces
- D) hydrogen bonding
- E) covalent forces

Answer: D

- 26. Consider the Bragg Equation. If the energy of a 400 nm beam of light is increased as it is reflected from two parallel mirrors (partially transparent) 800 nm apart, one might expect to see
 - A) An increase in the angle of diffraction (Θ)
 - B) A decrease in the angle of diffraction
 - C) No change in the diffraction pattern
 - D) Rainbows
 - E) The image of Elvis Presley

Answer: B

Energy up => wavelength down => angle Θ down; n λ =2dsin Θ . A rainbow results from white light (a range of wavelengths).

27. Nitric oxide, an important pollutant in air, is formed from the elements nitrogen and oxygen at high temperatures, as when gasoline burns in an automobile engine. At 2000°C, K = 0.01 for the reaction

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

Predict how the system will reach equilibrium at 2000°C if 0.4 moles of N_2 , 0.1 moles of O_2 , and 0.008 moles of NO are placed in a 1.0-liter container.

- A) More information is necessary.
- B) The concentration of NO will decrease; the concentrations of N_2 and O_2 will remain unchanged.
- C) The system will remain unchanged.
- D) The concentration of NO will decrease; the concentrations of N₂ and O₂ will increase.

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams
Print Name		Signa	ture		

E) The concentration of NO will increase; the concentrations of N₂ and O₂ will decrease. Answer: E

 $Q=P_{NO}^2/P_{O2}P_{N2} = (0.008)^2/(0.4)(0.2) = 0.0008$ O<K, reaction will go to the right (toward products)

- 28. A cylinder is fitted with a movable piston containing an ideal gas. The pressure inside the cylinder is P_i and the volume is V_i . What is the new pressure in the system when the piston decreases the volume of the cylinder by half, at constant T?
 - A) $2V_iP_i$
 - B) $(1/4)P_i$
 - C) P_i^2
 - D) 2*P*_{*i*}
 - E) $(1/2)P_i$

Answer D

29. The vapor pressure of a solution depends on

- A) the volume of the solution
- B) the temperature
- C) the volume of the vapor
- D) the amount of non-volatile soluble contaminants
- E) several of the factors listed above

Answer E (B and D are correct)

30. The following acids are listed in order of acid strength in water $HI > HNO_2 > CH_3COOH > HCIO > HCN$

Which of the following is the weakest base?

- A) I⁻
- B) NO_2^-
- C) CH₃COO⁻
- D) ClO
- E) CN⁻

Answer A (strongesgt acid => weakest conjugate base)

Section 3

pK_a 4.10 11.8

31. Consider the diprotic ascorbic acid (H_2As) .

	Ka
$H_2As = H^+ + HAs^-$	7.9×10^{-5}
HAs^{-} $H^{+}+As^{2-}$	1.6×10^{-12}
What major species are present at p	H 4.10?
A) As^{2-} and HAs^{-}	
B) HAs ^{$-$} and H ₂ As	
C) HAs ⁻ only	
D) H_2As only	
E) H_2As and H^+	
Answer: B	
Chapter 8	

32. During isothermal compression of an ideal monatomic gas, heat is released to the surroundings as the volume decreases at constant temperature. In this process, the energy of the gas

A) increases

B) decreases

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams
Print Name		Signature			
C) stays the	same				

C) stays the same D) cannot be determined from the information given Answer: C The energy of a perfect monatomic gas depends only on the temperature (KE=3/2RT).

33. Calculate ΔE for a system that releases 35 J of heat to the surroundings while 54 J of work is done on it.

A) -89 JB) -19 JC) 19 J D) 89 J E) 35 J Answer: C $\Delta E = q + w = -35 \text{ J} + 54 \text{ J} = +19 \text{ J}$ Chapter 9

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr Williams
Print Nama		Signo	tura	12/11/2000	DI. Williums
		_ Signa	luie		
34. Calculate the constant t A) 4.8 L•atm B) -4.8 L•atm C) 0.0 L•atm D) 5.6 L•atm E) -1.9 L•atm Answer: B $w = -P\Delta V = -1.6$ Chapter 9	e work for the expansion of emperature. 6 atm (6.0 L - 3.0 L) = -4	f an ideal gas from	n 3.0 to 6.0 L ag	ainst an external pr	essure of 1.6 atm at
Consider the foll Start: (3.0 End: (3.00	owing process carried out 0 atm, 20.0 L) 0 atm, 50.0 L).	on 1.0 mol of a n	nonatomic ideal §	gas at constant pres	sure:
35. Calculate the A) -90 L•atm B) 90 L•atm C) -30 L•atm D) 30 L•atm E) 0 L•atm Answer: A $w = -P\Delta V = -3 a$ Chapter 9	e work, <i>w</i> . atm (50 L - 20 L) = - 90 L	atm			
36. Calculate the A) 226 L•atm B) -226 L•atm C) 135 L•atm D) -135 L•atm E) none of these Answer: A T(A) = PV/nR = T(B) = PV/nR = $\Delta T = 1099 K$ $q = nC_p \Delta T = (1)$ = (5/2)	e heat, <i>q</i> . (3 atm)(20 L)/[(1.0 mol) (3 atm)(50 L)/[(1.0 mol) mol)(5/2 R J mol ⁻¹ K ⁻¹)(1 /2 x 8.31) 1099/101 = 22)(0.082 L-atm m)(0.082 L-atm m 101 J/L-atm) ⁻¹ (1 26 L-atm	ol ⁻¹ mol ⁻¹ K ⁻¹)] = Iol ⁻¹ K ⁻¹)] = 1830 099 K)	: 731 K) K	
 37. As a cold brithe [4 A) decreases / de B) increases / de C) decreases / in D) decreases / in 	ck (the system) spontaneou entropy (S) / free energy (C ecreases / increases ecreases / increases ncreases / increases ncreases / decreases	usly warms in a h G) / enthalpy (H)	ot pool of water] of the brick	(the surroundings)	,

- E) increases / increases / increases
- Answer: B

```
Chapter 10
```

- 38. As a cold brick (the system) spontaneously warms in a hot pool of water (the surroundings), the [entropy (S) / enthalpy (H)] of the surroundings
- A) decreases / increases B) increases / increases
- C) decreases / increases
- D) decreases / decreases

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams
Print Name		Signa	ture		
E) increase	es / increases				
Chapter 10)				
39. In a rea temp	ction where a diatomic mo erature and pressure, what	elecule (for example C) are the signs of ΔH , λ	D_2) spontaneously ΔS , and ΔG , resp	forms from its ator ectively?	ms at standard
A) + +	+ +	- · ·	· · · •	•	

A) + + + B) + - -C) - + + D) - - + E) - - -Answer: E Chapter 10

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams
Print Name		Signatur	e		

40. Consider the spontaneous freezing of liquid water at -10° C. For this process what are the signs for ΔH , ΔS , and ΔG , respectively?

A) + - 0 B) - + 0 C) - + -D) + - -E) - - -Answer: E Chapter 10

41. This graph illustrates the relationship between $\Delta G^{o}_{reaction}$ and absolute temperature. For this reaction, one can conclude that:

- A) $\Delta H^{\circ} > 0, \Delta S^{\circ} > 0$
- B) $\Delta H^{\circ} < 0, \Delta S^{\circ} > 0$
- C) $\Delta H^{\circ} > 0, \Delta S^{\circ} < 0$
- D) $\Delta H^{\circ} < 0, \Delta S^{\circ} < 0$
- E) The signs of ΔH° and ΔS° cannot be determined.

Answer A

- 42. A hot metal block (85 g, 97.9 C) is added to an insulating container holding 250 g H₂O at 22.3 C. If the final temperature measured is 27.4 C, then what is the specific heat of the metal?
 - A) 19.7 J/g-°C
 - B) 0.89 J/g-°C
 - C) 0.45 J/g-°C
 - D) 0.21 J/g-°C
 - E) 1.77 J/g-°C

Answer: B

 $(250 \text{ g})(4.18 \text{ J/g-K})(27.4-22.3) = 85(C_m)(97.9-27.4)$ C_m=0.9

43. For ammonia (NH₃), K_b is 1.8 x 10⁻⁵. The buffering capacity of a 1 M solution of NH₄Cl is at a maximum at a pH of

A) 4.7
B) 7.2
C) 12.2
D) 9.3
E) none of these

Answer: D

 $pK_{b} = -4.75$

 pK_a = 9.3, buffering capacity is max when pH = pK_a

Chapter 8

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams
Print N	ame	Signa	iture		
44.	For nitrous acid (HNO ₂)	$K_{\rm a} = 4.0 \times 10^{-4}$. Calo	culate the pH of	0.25 M HNO ₂ .	
	A) 2.00				
	B) 2.30				
	C) 2.70				
	D) 3.70				
	E) 4.31				
Answe	r: A				
45.	Consider a solution with	both he following sy	ystems:		

 $H_2CO_3 = HCO_3^- + H^+$ $pK_a = 6.4$

 $H_2PO_4^- = HPO_4^{2-} + H^+ pK_a = 7.2$

At pH 6.4, which one of the following are true?

- A) $[H_2CO_3] > [HCO_3^-]$ and $[H_2PO_4^-] > [HPO_4^{2-}]$
- B) $[H_2CO_3] = [HCO_3^-] \text{ and } [H_2PO_4^-] > [HPO_4^{2-}]$
- C) $[H_2CO_3] = [HCO_3^-] \text{ and } [HPO_4^{2-}] > [H_2PO_4^-]$
- D) $[HCO_3^-] > [H_2CO_3]$ and $[HPO_4^{2^-}] > [H_2PO_4^-]$
- E) $[H_2CO_3] > [HCO_3^-]$ and $[HPO_4^{2-}] > [H_2PO_4^-]$

Answer: B

Section 4

46. For the decomposition of nitrous oxide (N₂O) to N₂ and O₂: Rate = $k[N_2O]^2$. Several mechanisms are proposed:

А.	$N_2 O \Rightarrow N_2 + O$ $N_2 O + O \Rightarrow N_2 + O_2$	В.	$N_{2}O \rightarrow N + NO$ $N_{2}O + N + NO \rightarrow N_{3} + O_{2}$ $2N_{3} \rightarrow 3N_{2}$
С.	$2N_2O \rightarrow N_4O_2$	D.	$3N_2 O \rightarrow N_6 O_3$
	$N_4O_2 \rightarrow 2N_2 + O_2$		$2N_6O_3 \rightarrow 6N_2 + 3O_2$

Which of the mechanisms above is most likely to be correct?

A. Mechanism A.

B. Mechanism B.

- C. Mechanism C.
- D. Mechanism D.

E. None of these mechanisms are consistent with the experimental rate law.

Answer: C

47. The rate of a reaction can change with

- A. Temperature.
- B. The addition of a catalyst or enzyme.
- C. Reactant concentrations.
- D. None of the above (a-c).
- E. All of the above (a-c).

Answer: E

	Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams
--	-------	-------------	-----------	-----------	------------	--------------

Signature ____

- 48. The rate of disappearance of ozone in the reaction $2O_3(g) \rightarrow 3O_2(g)$ is 9.0 x 10^{-3} atm s⁻¹. What is the rate of appearance of O_2 ?
 - A. 1.3×10^{-2} atm s⁻¹
 - B. 9.0×10^{-3} atm s⁻¹
 - C. 6.0×10^{-3} atm s⁻¹
 - D. 3.0×10^{-5} atm s⁻¹
 - E. 2.7×10^{-5} atm s⁻¹

Answer: A

 $(3/2)9.0 \times 10^{-3} = 1.3 \times 10^{-2}$ atm/s

49. The balanced equation for the reaction of bromate with bromide to produce bromine (Br_2) in acidic solution is given by:

 $\begin{array}{l} BrO(aq)+ 5Br^{-}(aq)+ 6H^{+}(aq) \rightarrow 3Br_{2}(aq)+ 3H_{2}O(aq)\\ When d[Br^{-}]/dt \ is -1.0 \times 10^{-3} \ mol \ L^{-1} \ s^{-1}, \ what \ is \ d[Br_{2}]/dt?\\ A. & -0.6 \times 10^{-3} \ mol \ L^{-1} \ s^{-1}\\ B. & +0.6 \times 10^{-3} \ mol \ L^{-1} \ s^{-1}\\ C. & -1.0 \times 10^{-3} \ mol \ L^{-1} \ s^{-1}\\ D. & +1.0 \times 10^{-3} \ mol \ L^{-1} \ s^{-1}\\ E. & +1.7 \times 10^{-3} \ mol \ L^{-1} \ s^{-1}\\ Answer \ B:\\ (3/5)(1.0 \times 10^{-3}) = 0.6 \times 10^{-3}\end{array}$

Signature

- 50. Which is correct (see graph)
- A. i is the reactant, iii is a transition state, v is the product.
- B. v is the reactant, iv is the first transition state, iii is an intermediate, ii is the second transition state, i is the product.
- C. iiii is the reactant, ii is the one transition state, iv is another transition state, i and v are products.
- D. i is the reactant, ii is the first intermediate, iii is the second intermediate, iv is the third intermediate, v is the product.
- E. i is the reactant, ii is the first transition state, iii is the intermediate, iv is the second transition state, v is the product.

Answer: E

51. In the reaction coordinate graph above

- A. *l* is $\Delta G^{\circ}_{\text{reaction}}$, *2* is $\Delta G^{\circ \dagger}_{\text{forward first step}}$, *4* is $\Delta G^{\circ \dagger}_{\text{forward second step}}$
- B. *1* is $\Delta G^{\circ}_{\text{reaction}}$, *2* is $\Delta G^{\circ \ddagger}_{\text{forward first step}}$, *7* is $\Delta G^{\circ \ddagger}_{\text{forward second step}}$
- C. *1* is $\Delta G^{\circ}_{\text{reaction}}$, *3* is $\Delta G^{\circ \ddagger}_{\text{forward first step}}$, *4* is $\Delta G^{\circ \ddagger}_{\text{forward second step}}$
- D. 6 is $\Delta G^{\circ}_{reaction}$, 2 is $\Delta G^{\circ \ddagger}_{forward first step}$, 4 is $\Delta G^{\circ \ddagger}_{forward second step}$
- E. 6 is $\Delta G^{\circ}_{\text{reaction}}$, *l* is $\Delta G^{\circ \dagger}_{\text{forward first step}}$, 5 is $\Delta G^{\circ \dagger}_{\text{forward second step}}$
- Answer A:

52. From the reaction coordinate graph above

- $A. \quad k_{\text{ reverse second step}} \geq k_{\text{ forward first step}} \geq k_{\text{ forward second step}}$
- B. $k_{\text{ forward first step}} > k_{\text{ forward second step}} > k_{\text{ reverse second step}}$
- $C. \quad k_{\text{ forward second step}} \geq k_{\text{ forward first step}} \geq k_{\text{ reverse first step}}$
- $D. \quad k_{\text{ forward first step}} > k_{\text{ forward second step}} > k_{\text{ reverse first step}}$
- E. Cannot be determined

Answer C: $k_{\text{reverse second step}}$ is greater than all other k because the $\Delta G^{\circ^{\ddagger}}$ (iii on graph) for that step is smallest, etc.

- 53. From the reaction coordinate graph above
- A. K = 1
- B. K > 1
- C. K < 1
- D. K cannot be determined

Answer B: Well this makes no sense as written does it? It should have been K=1, K>1, K<1, not K=0, K>0, K<0 (is now fixed). Everyone gets this one right.

- 54. A moderately spontaneous reaction, with a small forward driving force
 - A. is necessarily a slow forward reaction.
 - B. is necessarily a fast forward reaction.
 - C. is necessarily a slow reverse reaction.
 - D. is necessarily a fast reverse reaction.
 - E. None of these are correct

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams

Signature _____

Answer: E. Don't confuse kinetics and thermodynamics

55. The following data were obtained for the reaction of NO with O₂. Concentrations are in M and rates are in $M s^{-1}$.

[NO] ₀	[0 ₂]0	Initial Rate
$1 imes 10^{18}$	1×10^{18}	$2.0 imes10^{16}$
2×10^{18}	$1 imes 10^{18}$	$8.0 imes10^{16}$
$3 imes 10^{18}$	$1 imes 10^{18}$	$18.0 imes10^{16}$
$1 imes 10^{18}$	2×10^{18}	$4.0 imes10^{16}$
$1 imes 10^{18}$	3×10^{18}	$6.0 imes10^{16}$

Which of the following is the rate law for this reaction?

- A. Rate = $k[NO][O_2]$ B. Rate = $k[NO][O_2]^2$ C. Rate = $k[NO]^2[O_2]$ D. Rate = $k[NO]^2$ E. Rate = $k[NO]^2[O_2]^2$

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams										
Print Name		Signa	ature												
Extra Credit: T	he following questi	ons are worth just tw	vo points (2 pt) ea	ch!											
Consider the gas	-phase reaction														
	$H_{2}(g) + (1)$	$I/2$) $O_2(g) \rightleftharpoons H_2$	O (g).												
Standard gas pha	ase thermodynamic i	nformation is availabl	e:												
$\Delta \mathrm{H^{o}_{f}(H_{2})} = 0.0$	S	$S_{f}^{\circ}(H_{2}) = 131 \text{ J/mol-K}$													
$\Delta \mathrm{H}^{\circ}_{\mathrm{f}}(\mathrm{O}_2) = 0.0$	S	$o_{f}(O_{2}) = 205 \text{ J/mol-K}$	-												
$\Delta \mathrm{H}^{\circ}_{\mathrm{f}}(\mathrm{H}_{2}\mathrm{O}) = -24$	42 kJ /mol S	$S^{\circ}_{f}(H_{2}O) = 189 \text{ J/mol-K}$													
56. What is ΔH°	r for this reaction?														
A) + 121 kJ/mol E) Cannot Answer: C	B) - 121 k be determined from	J/mol C) - 2 the information given	242 kJ/mol	D) + 242 kJ/mol											
57. What is ΔS°	for this reaction?														
A) - 44 J/mol-K E) Cannot be det Answer: A 189-(1/2)205-13	B) + 44 J/2 ermined. 1 = -44	mol-K C) +	147 J/mol-K	D) -147 J/mol-K											
58. What is ΔG°	r for this reaction at	298K?													
A) -255 kJ/mol E) Cannot be det Answer: C -242-(298)(-44/1	B) +229 k ermined. 000) = -229	J/mol C) -2	29 kJ/mol	D) +255 kJ/mol											
59. For this react	ion. at about what te	mperature is $\Delta G^{\circ}_{r} = 0$)?												
A) 5.5 K E) Cannot be det Answer: B T=242/.044 = 55	B) 5500 K ermined. 00K	C) 30	00 K	D) 5200 K											
60. For this react A) 24 E) Cannot be det Answer: A -242-1000(-0.044) ln(Kac) = (8.31 J/	ion, what is the appr B) 29 ermined. $4) = -198 = -\ln(K_{eq})$ (mol K)(1000)(198 k	oximate value of ln(K C) 3 ⁴ /RT J mol) = 23.8	feq) at T = 1000 KΩ 4	D) -24											
61 The mening	m mode (in shart to	value) abteinable (m this resting at 1	1000 V and $0 = 0.00$))); () :- 4-										
reaction quotient	m work (in absolute) is approximately:	value) obtainable from	m this reaction at	1000 K, and Q = 0.00	125 (Q is the)										
A) 0 kJ/mol E) Cannot be det	B) 150 kJ/ ermined.	/mol C) 25	50 kJ/mol	D) 200 kJ/mol											

Final	Test Form C	Chem 1310	Fall 2008	12/11/2008	Dr. Williams

w = -198000 + 8.3*1000ln(0.0025) = -198000 J/mol - 50000 J/mol = -248 kJ/mol

62.

- A) This is Test Form "C". My Scantron is filled in completely and correctly.
- B) This is Test Form "D". My Scantron is filled in completely and correctly.
- C) My Scantron is not filled in completely or correctly probably because I did not bother to bubble in my GT ID (minus 10 points for this answer).

Signature _____

Signature _____

Print Name

1 mole atoms = $6.022 \times 10^{23} atoms$ $h = 6.626 \times 10^{-34} Js$ 1 J (Joule) = 1 kg $\frac{m^2}{s^2}$ 1 J (Joule) = .0099 L - atm (or 101 J/L - atm) $c = 3.0x10^8 m/s$ $R = 0.0821 \frac{L - atm}{mol - K}$ $R = 8.31 \frac{J}{mol - k}$ $P^{\circ}_{H20, 373} = 760 \text{ torr} \quad P^{\circ}_{H20, 298} = 23.8 \text{ torr}$ Formal Charge = V - (L + 0.5 S)V = # valence e⁻; L = # lone pair e⁻; S = # share $P_1 = X_1 \bullet P_1^{\circ} \qquad X_1 = \frac{n_1}{n_{\text{total}}}$ $m = \frac{\text{mol of solute}}{kg \text{ of solvent}} \qquad M = \frac{\text{mol of solute}}{L \text{ of solution}}$ $\Delta T_{f} = -m \bullet K_{f} \qquad \Delta T_{b} = m \bullet K_{b} \qquad \Pi = MRT$ $q = mC\Delta T$ $q_v = nC_V\Delta T$ $q_p = nC_p \Delta T$ $dS = \frac{dq}{T}$ $\Delta G = \Delta H - T \Delta S \qquad \Delta G^{\circ} = -RT \ln K$ $\Delta G = \Delta G^{o} + RT \ln Q \qquad \mathbf{K} = \mathbf{k}_{\rm f} / \mathbf{k}_{\rm r}$ $T_c = \frac{\Delta H^o}{\Delta S^o} \qquad \qquad C_{water} = 4.184 \frac{J}{g - K}$ $n\lambda = 2d\sin\Theta$

 $c = \lambda v \qquad \mathbf{E} = \mathbf{h} v \qquad \lambda = \frac{h}{p}$ $\hat{H} \psi = E \psi \qquad \Delta x * m \Delta v \ge \frac{h}{4\pi} \quad E = mc^2$ Maximum Occupancy = $2n^2$

$$\begin{split} \overline{K} & pH = -\log[H^+] & pOH = -\log[OH^-] \\ K_w = K_a K_b & pH + pOH = 14 \\ HA(aq) \Leftrightarrow H^+(aq) + A^-(aq) \\ ed e^- & K_a = \frac{[H^+][A^-]}{[HA]} & pKa = -\log K_a \\ pH = pKa + \log\left(\frac{[base]}{[acid]}\right) \\ K_w = 10^{-14} \text{ at } 25^\circ C & pKw = 14 \text{ at } 25^\circ C \\ B(aq) \Leftrightarrow BH^+(aq) + OH^-(aq) \\ K_b = \frac{[BH^+][OH^-]}{[B]} \\ \Delta E = q + w \\ w = -P_{ext}\Delta V & w_{rev} = -nRT \ln \frac{V_f}{V_i} \\ Monatomic ideal gas; C_p = \frac{5}{2}R & C_v = \frac{3}{2}R \\ \Delta H = q_p (\text{const T}) \\ \text{KE}_{mol} = \frac{3}{2}\text{RT} & \text{KE}_{ave} = \frac{1}{2}m\overline{u}^2 \end{split}$$

Rate = $-k[A]^{a}[B]^{b} \Delta G^{*_{f}^{\dagger}}=-RTInk$

integrated rate laws; a=0, b=0: $[A] = -kt + [A]_{o}$; a=1, b=0: $\ln [A] = -kt + \ln [A]_{o}$; a=2, b=0: $[A]^{-1} = kt + [A]_{o}^{-1}$

Signature _____

Print Name_____

06

C 22

93

50

96 Ħ

86 Ç

Bk (247)

Fm (257)

100

2

102

103 Ę

231.03588 Pa 91

238.0289

244

(247)

(251)

(252)Es 66

(259) **2**0

(262

		(223)	Fr	87	Cesium 132.90545	Cs	55	85.4678	Rb	37	39.0983	K	19	Sodium 22.989770	Na	11	Lithium 6.941	Li	з	Hydrogen 1.00794	Η	1		
		(226)	Ra	88	Barium 137.327	Ва	56	87.62	Sr	38	40.078	Ca	20	Magnesium 24.3050	Mg	12	Beryllium 9.012182	Be	4					
		(227)	Ac	68	Lanthanum 138.9055	La	57	88.90585	Y	39	44.955910	Sc	21				1			1				
		(261)	Rf	104	Hafnium 178.49	Hf	72	91.224	Zr	40	47.867	Ti	22											
Cerium	58	(262)	Db	105	Tantalum 180.9479	Ta	73	92.90638	NР	41	50.9415	V	23											
Praseodymium	59	263)	BS BS	106	Tungsten 183.84	W	74	95.94	Mo	42	51.9961	C r	24										•	_
Neodymium	60	(262)	Bh	107	Rhenium 186.207	Re	75	(98)	Tc	43	54.938049	Mn	25											he Pe
Promethium	61	(265)	Hs	108	Osmium 190.23	O _s	76	101.07	Ru	44	55.845	Fe	26											rindi
Samarium	62	(266)	Mt	109	Iridium 192.217	Ir	77	102.90550	Rh	45	58.933200	Co	27										-	e Tat
Europium	63	(269)		110	Platinum 195.078	Pt	78	106.42	Pd	46	58.6934	Ż	28											ble of
Gadolinium	64	(272)		111	Gold 196.96655	Au	79	107.8682	Ag	47	63.546	Cu	29											the F
Terbium	65	(277)		112	Mercury 200.59	Hg	08	112.411	Cd	48	65.39	Zn	30											leme
Dysprosium	66			113	Thallium 204.3833	T	81	114.818	In	49	69.723	Ga	31	Aluminum 26.981538	Al	13	Boron 10.811	в	S					nts
Holmium	67			114	Lead 207.2	Pb	82	118.710	Sn	50	72.61	Ge	32	Silicon 28.0855	Si	14	Carbon 12.0107	C	6					
Erbium	89				Bismuth 208.98038	Bi	83	121.760	dS	51	74.92160	As	33	Phosphorus 30.973761	Р	15	Nitrogen 14.00674	Z	7					
Thulium	69				Polonium (209)	\mathbf{P}_{0}	84	127.60	Te	52	78.96	Se	34	Sulfur 32.066	S	16	Oxygen 15.9994	0	8					
Ytterbium	70				Astatine (210)	At	85	126.90447		53	79.904	Br	35	Chlorine 35.4527	C	17	Fluorine 18.9984032	Ŧ	9					
Lutetium	71				Radon (222)	Rn	98	ленон 131.29	Xe	54	83.80	Kr	36	Argon 39.948	Ar	18	Neon 20.1797	Ne	10	Helium 4.003	He	2		