Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad
This test is closed note/book One 8.5×11 handwritten crib sheet (one sided) is permitted. Please turn off your cell phone. Use a \#2 pencil.

Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Cell phones may not be used as calculators.

Complete the Scantron card as shown below. Identify your version as indicated. Scantron errors are punishable by point deductions.

A total of 50 minutes will be allotted for the exam. Answer every question. There is no penalty for guessing.

Circle Your Section

Mindi Ogden
Denise Enekwa
Deborah Ortiz
Yo-Yuan Cheng
Wei Long
Chiaolong Hsiao
Michael Rood

A1 W 3-6
A2 W 3-6
A3 W 3-6
A4 W 3-6
A4 W 3-6
B1 Th 3-6
B2 Th 3-6

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad

1. The heat gained by the system from the surroundings in a process carried out at constant pressure is
a. w
b. ΔH
c. $-\Delta H$
d. $\Delta \mathrm{E}$
e. ΔS

Answer: b
2. Which one of the following statements is NOT true concerning the equation below?

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \quad \Delta \mathrm{H}_{\mathrm{r}}^{\circ}=-460 \mathrm{~kJ}
$$

a. The complete reaction of 1.0 mole of H_{2} consumes 153 kJ of heat. b. The complete reaction of 1.0 mole of N_{2} produces 460 kJ of heat.
c. The production of 1.0 mole of ammonia is accompanied by the production of 230 kJ of heat.
d. The complete reaction of 1.38 mole of hydrogen requires 0.46 mole of nitrogen.
e. All of these are true statements.

Answer: a, the forward reaction produces heat
3. The First Law of Thermodynamics states that
a. work and heat are interconvertable
b. energy is conserved
c. energy cannot be created or destroyed
d. all of the above (a-c)
e. none of the above

Answer: d
4. Which of the following is not a state function?
a. q
b. E
c. H
d. G
e. All of these are state functions.

Answer: a
5. Which of the following processes has $\Delta H>0$?
a. combustion of a hydrocarbon (gives off heat, $\Delta \mathrm{H}_{\text {combust }}<0$)
b. dilution of concentrated hydrochloric acid with water (gives off heat, $\Delta \mathrm{H}<0)$
c. vaporization of water (absorbs heat, makes you, the surroundings, cold $\Delta \mathrm{H}>0$)
d. freezing of liquid N_{2} (gives off heat, $\Delta H<0$)
e. all have $\Delta H>0$

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad
Answer: C
6. Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that is 0.10 M in NaF and 0.20 M in $\mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=7.2 \times 10^{-4}\right)$.
a) $0.20 \times 10^{-1} \mathrm{M}$
b) $7.0 \times 10^{-4} \mathrm{M}$
c) $1.4 \times 10^{-3} \mathrm{M}$
d) $3.6 \times 10^{-4} \mathrm{M}$
e) none of these

Answer: c

	$[\mathrm{HF}]$	$\left[\mathrm{F}^{-}\right]$	$\left[\mathrm{H}^{+}\right]$
I	2×10^{-1}	$1 \mathrm{x} 10^{-1}$	10^{-7}
C	-x	x	x
E	$\left(2 \times 10^{-1}\right)-\mathrm{x}$	$\left(1 \mathrm{x} 10^{-1}\right)+\mathrm{x}$	$10^{-7}+\mathrm{x}$

Assume $10^{-1} \gg x \gg 10^{-7}$
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]=\left(10^{-1}\right)(\mathrm{x}) /\left(2 \mathrm{x} 10^{-1}\right) \quad \mathrm{x}=7.2 \mathrm{x} 10^{-4}\left(2 \times 10^{-1}\right)\left(10^{+1}\right)=1.4 \times 10^{-3}$
7. What quantity of $\mathrm{NaOH}(\mathrm{s})$ must be added to 1.00 L of 0.200 M HCl to achieve a pH of 12.0? (assume constant volume.)
a) 0.20 mole
b) 0.42 mole
c) 0.21 mole
d) 0.01 mole
e) none of these

Answer: c
0.2 moles are required to bring the pH to 7 (neutralize the HCl).
0.01 moles are required to bring the pH from 7 to 12.
8. Consider the solution buffered by the weak acid HA.

$$
\mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

Which of the statements below is false?
a) Addition of $\mathrm{NaCl}(\mathrm{s})$ to produce $\mathrm{Na}^{+}(\mathrm{aq})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$ will change the
pH. False: NaCl is not an acid or base, and there is no common ion.
b) If the ratio of [$\left.\mathrm{A}^{-}\right] /[\mathrm{HA}]$ is constant, the pH is constant. True:
$\mathrm{pH}=\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
c) The solution resists change in pH when acid or base is added.

True: that is the definition of a buffer.
d) The buffering capacity is maximum when $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$. True: $\mathrm{pH}=\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right.$]/[HA] and the \% change of [$\left.A^{-}\right] /[H A]$ with change in [A] is a minimum when [Á]/[HA] = 1 .
e) $\mathrm{pH}=\mathrm{pKa}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$. True: That is the Henderson-Hasselbalch equation.
Answer: a

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad

Given the following enthalpies of formation:
Species
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{kJ} \mathrm{mol}{ }^{-1}\right)$
glucose $\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})\right] \quad-1274$
CO_{2} (g)
-393
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
-286
9. What is the standard enthalpy of combustion of glucose to form carbon dioxide and liquid water.
a. $-2800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b. $-1953 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c. $-595 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d. $595 \mathrm{~kJ} \mathrm{~mol}^{-1}$
e. none of these

Answer: a
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}=6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{O}_{2}\right)=0$
$\Delta \mathrm{H}_{\mathrm{r}}{ }^{\circ}=6(-286)+6(-393)-(-1274)=-1716-2358+1274=-2800 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$

```
A perfect gas is very slowly compressed from 45 L to 18 L at a
constant external pressure of 5.0 atm. During this process 9.8 kJ of
energy is released as heat.
10. The heat q for this process is
a. 135 kJ
b. -135 kJ
c. -9.8 kJ
d. 9.8 kJ
e. 270 kJ
Answer: c, if q is released to the surroundings, q}\mp@subsup{q}{\textrm{sys}}{}<0
11. The work w for this process is
a. -9.82 L atm
b. 9.82 L atm
c. }135\textrm{L}\mathrm{ atm
d. -135 L atm
e. 270 kJ
Answer: c w=-P\DeltaV = -5(18-45)=135 L atm
```

12. In any process, $\Delta \mathrm{E}_{\text {univ }}=$
a. 0
b. $\Delta \mathrm{E}_{\mathrm{sys}}$
c. $\Delta E_{\text {surr }}$
d. $-\Delta \mathrm{E}_{\text {sys }}$
e. $-\Delta \mathrm{E}_{\text {surr }}$

Answer: a

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad
13. Given the following $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ values:
$\mathrm{SiH}_{4}(\mathrm{~g}) \quad 34.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{SiO}_{2}(\mathrm{~s}) \quad-910.9 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{O}_{2}(\mathrm{~g}) \quad 0.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Also,
$\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}_{\text {vap }}=44.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Calculate $\Delta \mathrm{H}_{\mathrm{r}}{ }^{\circ}$ for $\mathrm{SiH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$.
a. $-1517 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
b. $-1429 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c. $-1187 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
d. This cannot be determined without additional information.
e. none of these

Answer: d, you need to know $\Delta \mathrm{H}_{\text {fusion }}$ for $\mathrm{H}_{2} \mathrm{O}$.
14. The second law of thermodynamics states that
a. energy is conserved in spontaneous processes.
b. the heat content of the universe increases during a spontaneous process.
c. the entropy of the universe increases during a spontaneous process.
d. the entropy of a perfect crystal is zero at absolute zero.
e. work and heat are interconvertable.

Answer: c
15. For the vaporization of a liquid at its boiling point T_{b}, the change in entropy and the change in enthalpy are related by
a. $\Delta \mathrm{S}_{\text {vap }}=\Delta \mathrm{H}_{\text {vap }} / \mathrm{T}_{\mathrm{b}}$
b. $\Delta \mathrm{S}_{\text {vap }}=\mathrm{T}_{\mathrm{b}} \Delta \mathrm{H}_{\text {vap }}$
c. $\Delta \mathrm{S}_{\text {vap }}=\mathrm{T}_{\mathrm{b}} / \Delta \mathrm{H}_{\text {vap }}$
$\mathrm{d} \quad \mathrm{T}_{\mathrm{b}}=\Delta \mathrm{H}_{\text {vap }} \Delta \mathrm{S}_{\text {vap }}$
e. There is no general relation covering these vaporization quantities.
Answer: a, at the boiling point $0=\Delta G=\Delta H_{\text {vap }}-T_{b} \Delta S_{\text {vap }}$
16. If $\Delta S_{\text {univ }}$ is positive for a process, the process is , if $\Delta S_{\text {univ }}$ for a process is negative, the process is __, and if the $\Delta S_{\text {univ }}$ for a process is zero, the process is \qquad -
a. at equilibrium, spontaneous, nonspontaneous
b. nonspontaneous, spontaneous, at equilibrium
c. spontaneous, at equilibrium, nonspontaneous
d. spontaneous, nonspontaneous, at equilibrium
e. none of these

Answer: d

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad
17. A process can proceed spontaneously in the forward direction at low temperatures and in the reverse direction at high temperatures if
a. $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative.
b. $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive.
c. both ΔH and ΔS are positive.
d. both ΔH and ΔS are negative.
e. This cannot be answered in such a general way.

Answer: d: $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$. At low T the $\Delta \mathrm{H}$ term dominations and $\Delta \mathrm{H}<0$ will drive reaction forward. At high $T, T \Delta S$ term dominates and $\Delta S<0$ will drive the reaction in reverse.
18. Methyl orange is an indicator with a K_{a} of 10^{-4}. The protonated form of methyl orange is red, while the deprotonated form is yellow. At pH 6.0 , the indicator will be
a) red.
b) orange.
c) yellow.
d) blue.
e) not enough information

Answer: c: When the $\mathrm{pH}>\mathrm{pK}_{\mathrm{a}}$, the predominant species is deprotonated. $\left(\mathrm{pK}_{\mathrm{a}}=4\right)$

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad
19. I have followed the instructions on the first page. I have entered my GT number, my name, the exam version, and my section number.
a. True
b. False

Answer: a
20. This is exam version:
a. A
b. B
c. C

Answer: A,B,C

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten
Name \qquad Section Number \qquad

Constants:

Stoichiometry:

1 mole $=6.022 \times 10^{23}$ atoms
1 mole $=6.022 \times 10^{23}$ molecules
Density $=\frac{\text { mass }}{\text { volume }}$
1 mole $=6.022 \times 10^{23}$ ions
$h=6.626 \times 10^{-34} J S$
$1 \mathrm{~J}($ Joule $)=1 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}$

$$
\mathrm{n}(\text { number of moles })=\frac{\text { mass }}{\text { Molar Mass }}
$$

$c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Mass of an Electron $=9.10939 \times 10^{-31} \mathrm{~kg}$
Mass of a Proton $=1.67 \times 10^{-27} \mathrm{~kg}$
Mass of a Neutron $=1.67 \times 10^{-27} \mathrm{~kg}$

$$
\text { Molarity }=M=\frac{\text { mole of solute }}{\mathrm{L} \text { of solvent }}
$$

Quantum Mechanics

$$
c=\lambda v
$$

$$
E=m c^{2}
$$

$R=0.0821 \frac{\mathrm{Latm}}{\mathrm{molK}}$

$$
\lambda=\frac{h}{p}
$$

$R=8.31 \frac{\mathrm{~J}}{\mathrm{molK}}$

$$
\hat{H} \psi=E \psi
$$

V.P. $\left(\mathrm{H}_{2} \mathrm{O}, 373 \mathrm{~K}\right)=760$ torr

$$
\Delta x * m \Delta v \geq \frac{h}{4 \pi}
$$

$$
\text { Maximum Occupancy }=2 n^{2}
$$

Solubility Rules

1. All alkali metal salts are soluble.
2. All ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$salts are soluble.
3. All chlorides, bromides, and iodides are soluble except those of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+}.
4. All nitrates, chlorates, and perchlorates are soluble.
5. All sulfates except those of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Ag^{+}.
6. All carbonates, chromates, oxalates, and phosphates are insoluble except those of the alkali metals and ammonium.
7. All hydroxides are insoluble except those of the alkali metals.

Bonding
Formal Charge $=\mathrm{V}-(\mathrm{L}+0.5 \mathrm{~S})$
$\mathrm{V}=$ Number of Valence Electrons
L = The Number of Lone Pair Electrons
S = The Number of Shared Electrons

Name \qquad
Solutions
$P=X_{1} \bullet P^{o}$
$m=$ molality $=\frac{\text { mol of solute }}{k g \text { of solvent }}$
$\Delta T_{f}=-m \bullet K_{f}$
$\Delta T_{b}=m \bullet K_{b}$
$X_{1}=$ mole fraction $=\frac{\mathrm{n}_{1}}{\mathrm{n}_{\text {total }}}$
$\Pi=M R T$
Gas Laws
$P_{1} V_{1}=P_{2} T_{2}$
$V_{1} T_{2}=V_{2} T_{1}$
$P V=n R T$
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
Kelvin $={ }^{\circ} C+273.15$
$\left(P+a \frac{n^{2}}{V^{2}}\right)(V-n b)=n R T$
$P_{\text {total }}=P_{1}+P_{2}+\ldots+P_{n}$
$K E(\mathrm{~mol})=\frac{3}{2} R T($ monoatomic $)$
$\mathrm{KE}($ particle $)=\frac{1}{2} m u^{2}$

Section Number \qquad
Acid-Base
$p H=-\log \left\lfloor H^{+}\right\rfloor$
$p O H=-\log \left[\mathrm{OH}^{-}\right]$
$K_{w}=K_{a} K_{b}$
$p H+p O H=14$
$H A(a q) \leftrightarrow H^{+}(a q)+A^{-}(a q)$
$K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}$
$K_{w}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$
$B(a q) \leftrightarrow \mathrm{BH}^{+}(a q)+\mathrm{OH}^{-}(a q)$
$K_{b}=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}$
$p K a=-\log \mathrm{K}_{\mathrm{a}}$
$p K w=14$ at $25^{\circ} \mathrm{C}$
$p H=p K a+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)$

Thermodynamics
$E=q+w$
$w=-P_{\text {ext }} \Delta V$
$C_{p}=\frac{5}{2} R$ (monoatomic ideal gas)
$\mathrm{C}_{\mathrm{v}}=\frac{3}{2} R$ (monoatomic ideal gas)
$\Delta \mathrm{H}=\mathrm{q}_{\mathrm{p}}$ (constant temperature)
$\mathrm{w}_{\mathrm{rev}}=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)$

$$
q=m C \Delta T
$$

$$
q_{v}=n C_{V} \Delta T
$$

$$
q_{p}=n C_{p} \Delta T
$$

$$
d S=\frac{d q}{T}
$$

$$
\Delta G=\Delta H-T \Delta S
$$

$$
\Delta G=-R T \ln K
$$

$$
T_{c}=\frac{\Delta H}{\Delta S}
$$

$$
C_{\text {water }}=4.184 \frac{\mathrm{~J}}{\mathrm{molK}}
$$

