Name ______ Section Number _____

This test is closed note/book One 8.5 x 11 handwritten crib sheet (one sided) is permitted. Please turn off your cell phone. Use a #2 pencil.

Calculators are permitted. Computers, PDAs, and other electronic devices with a keyboard are not. Cell phones may not be used as calculators.

Complete the Scantron card as shown below. Identify your version as indicated. Scantron errors are punishable by point deductions.

A total of 50 minutes will be allotted for the exam. Answer every question. There is no penalty for guessing.

Circle Your Section

Mindi Ogden	A1 W 3-6
Denise Enekwa	A2 W 3-6
Deborah Ortiz	A3 W 3-6
Yo-Yuan Cheng	A4 W 3-6
Wei Long	A4 W 3-6
Chiaolong Hsiao	B1 Th 3-6
Michael Rood	B2 Th 3-6

Chem. 1310 Spring 2008 Exam 3 VERSION A

Professors Williams/Whetten

Name ______ Section Number _____ 1. The heat gained by the system from the surroundings in a process carried out at constant pressure is a. W b. ΔH c. $-\Delta H$ d. ΔE e. ∆S Answer: b 2. Which one of the following statements is **NOT** true concerning the equation below? $N_2 + 3H_2 \implies 2NH_3 \qquad \Delta H_r^{\circ} = -460 \text{ kJ}$ The complete reaction of 1.0 mole of H₂ consumes 153 kJ of heat. a. The complete reaction of 1.0 mole of N_2 produces 460 kJ of heat. b. The production of 1.0 mole of ammonia is accompanied by the c. production of 230 kJ of heat. The complete reaction of 1.38 mole of hydrogen requires 0.46 mole d. of nitrogen. e. All of these are true statements. Answer: a, the forward reaction produces heat 3. The First Law of Thermodynamics states that a. work and heat are interconvertable b. energy is conserved c. energy cannot be created or destroyed d. all of the above (a-c) e. none of the above Answer: d 4. Which of the following is not a state function? a. q b. E c. H d. G e. All of these are state functions. Answer: a 5. Which of the following processes has $\Delta H > 0$? a. combustion of a hydrocarbon (gives off heat, $\Delta H_{combust} < 0$) b. dilution of concentrated hydrochloric acid with water (gives off heat, $\Delta H < 0$) c. vaporization of water (absorbs heat, makes you, the surroundings, cold $\Delta H > 0$) d. freezing of liquid N₂ (gives off heat, $\Delta H < 0$) e. all have $\Delta H > 0$

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten Name ______ Section Number _____ Answer: c Calculate the $[H^{\dagger}]$ in a solution that is 0.10 M in NaF and 0.20 M 6. in HF ($K_a = 7.2 \times 10^{-4}$). a) $0.20 \times 10^{-1} M$ b) 7.0 x 10^{-4} M c) 1.4 x 10^{-3} M d) $3.6 \times 10^{-4} M$ e) none of these Answer: c $\begin{bmatrix} F^{-} \end{bmatrix} \qquad \begin{bmatrix} H^{+} \end{bmatrix} \\ 1 \times 10^{-1} \qquad 10^{-7}$ [HF] 2x10⁻¹ I C -x х x $(2x10^{-1})-x$ $(1 \times 10^{-1})+x$ $10^{-7}+x$ E Assume $10^{-1} >> x >> 10^{-7}$ $K_a = [H^+][F^-] = (10^{-1})(x)/(2x10^{-1})$ $x=7.2 \times 10^{-4}(2x10^{-1})(10^{+1}) = 1.4x10^{-3}$ 7. What quantity of NaOH(s) must be added to 1.00 L of 0.200 M HCl to achieve a pH of 12.0? (assume constant volume.) a) 0.20 mole b) 0.42 mole c) 0.21 mole d) 0.01 mole e) none of these Answer: c 0.2 moles are required to bring the pH to 7 (neutralize the HCl). 0.01 moles are required to bring the pH from 7 to 12. 8. Consider the solution buffered by the weak acid HA. $HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$ Which of the statements below is false? a) Addition of NaCl(s) to produce Na⁺(aq) and Cl⁻(aq) will change the pH. False: NaCl is not an acid or base, and there is no common ion. If the ratio of $[A^-]/[HA]$ is constant, the pH is constant. True: b) pH=pKa+log[A⁻]/[HA] The solution resists change in pH when acid or base is added. C) True: that is the definition of a buffer. d) The buffering capacity is maximum when $pH=pK_a$. True: pH=pKa+log[A]]/[HA] and the % change of [A⁻]/[HA] with change in [A⁻] is a minimum when $[A^-]/[HA] = 1$. e) pH=pKa+log[A⁻]/[HA]. True: That is the Henderson-Hasselbalch equation. Answer: a

Exam 3 VERSION A

Name ______ Section Number _____

Given the following enthalpies of formation: Species ΔH_f° (kJ mol⁻¹) glucose [C₆H₁₂O₆(s)] -1274 CO₂(g) -393 H₂O(1) -286

9. What is the standard enthalpy of combustion of glucose to form carbon dioxide and liquid water. a. $-2800 \text{ kJ mol}^{-1}$ b. $-1953 \text{ kJ mol}^{-1}$ c. -595 kJ mol^{-1} d. 595 kJ mol^{-1} e. none of these Answer: a $C_6H_{12}O_6(s) + 6O_2 = 6H_2O(1) + 6CO_2(g)$ $\Delta H_f^{\circ}(O_2) = 0$

```
\Delta H_r^{\circ} = 6(-286) + 6(-393) - (-1274) = -1716 - 2358 + 1274 = -2800 \text{ kJ mol}^{-1}
```

```
A perfect gas is very slowly compressed from 45 L to 18 L at a
constant external pressure of 5.0 atm. During this process 9.8 kJ of
energy is released as heat.
10. The heat q for this process is
    135 kJ
a.
b. -135 kJ
c. -9.8 kJ
d. 9.8 kJ
e.
    270 kJ
Answer: c, if q is released to the surroundings, q<sub>svs</sub><0.
11. The work w for this process is
a. -9.82 L atm
b. 9.82 L atm
c. 135 L atm
d. -135 L atm
e.
    270 kJ
Answer: c w = -P\Delta V = -5(18-45)=135 L atm
12. In any process, \Delta E_{univ} =
a.
      0
b.
     \Delta E_{svs}
c.
     \Delta E_{surr}
d. -\Delta E_{svs}
e. -\Delta E_{surr}
```

Answer: a

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten Name ______ Section Number _____ 13. Given the following ΔH_f° values: 34.3 kJ mol^{-1} SiH₄(q) $-910.9 \text{ kJ mol}^{-1}$ $SiO_{2}(s)$ $H_2O(1)$ $-285.8 \text{ kJ mol}^{-1}$ 0.0 kJ mol⁻¹ 0₂(g) Also, $\Delta H_{vap} = 44.0 \text{ kJ mol}^{-1}$. H_2O Calculate ΔH_r° for $SiH_4(g) + 2O_2(g) \implies SiO_2(s) + 2H_2O(s)$. a. $-1517 \text{ kJ mol}^{-1}$ b. $-1429 \text{ kJ mol}^{-1}$ c. $-1187 \text{ kJ mol}^{-1}$ d. This cannot be determined without additional information. e. none of these Answer: d, you need to know ΔH_{fusion} for H_2O . 14. The second law of thermodynamics states that energy is conserved in spontaneous processes. a. b. the heat content of the universe increases during a spontaneous process. c. the entropy of the universe increases during a spontaneous process. d. the entropy of a perfect crystal is zero at absolute zero. work and heat are interconvertable. e. Answer: c 15. For the vaporization of a liquid at its boiling point T_{b} , the change in entropy and the change in enthalpy are related by a. $\Delta S_{vap} = \Delta H_{vap} / T_{b}$ b. $\Delta S_{vap} = T_b \Delta H_{vap}$ c. $\Delta S_{vap} = T_b / \Delta H_{vap}$ $T_{\rm b} = \Delta H_{\rm vap} \Delta S_{\rm vap}$ d There is no general relation covering these vaporization e. quantities. Answer: a, at the boiling point $0 = \Delta G = \Delta H_{vap} - T_{b} \Delta S_{vap}$ 16. If ΔS_{univ} is positive for a process, the process is _____, if ΔS_{univ} for a process is negative, the process is _____, and if the ΔS_{univ} for a process is zero, the process is _____. a. at equilibrium, spontaneous, nonspontaneous b. nonspontaneous, spontaneous, at equilibrium c. spontaneous, at equilibrium, nonspontaneous d. spontaneous, nonspontaneous, at equilibrium e. none of these Answer: d

Chem. 1310 Spring 2008 Exam 3 VERSION A Professors Williams/Whetten Name ______ Section Number ______ 17. A process can proceed spontaneously in the forward direction at low temperatures and in the reverse direction at high temperatures if a. ΔH is positive and ΔS is negative. b. ΔH is negative and ΔS is positive. c. both ΔH and ΔS are positive. d. both ΔH and ΔS are negative. e. This cannot be answered in such a general way. Answer: d: $\Delta G = \Delta H - T \Delta S$. At low T the ΔH term dominations and $\Delta H < 0$ will drive reaction forward. At high T, TAS term dominates and $\Delta S < 0$ will drive the reaction in reverse. 18. Methyl orange is an indicator with a K_a of 10^{-4} . The protonated form of methyl orange is red, while the deprotonated form is yellow. At pH 6.0, the indicator will be a) red. b) orange. c) yellow. d) blue. e) not enough information Answer: c: When the $pH > pK_{a}$, the predominant species is deprotonated. $(pK_a = 4)$

c. C

Answer: A,B,C

Name ______ Section Number ______ 19. I have followed the instructions on the first page. I have entered my GT number, my name, the exam version, and my section number. a. True b. False Answer: a 20. This is exam version: a. A b. B

Exam 3 VERSION A

Name	Section Number
<u>Constants</u> :	Stoichiometry:
$1 \text{ mole} = 6.022 \text{ x} 10^{23} atoms$	mass
$1 \text{ mole} = 6.022 \text{ x} 10^{23} \text{ molecules}$	$Density = \frac{mass}{volume}$
$1 \text{ mole} = 6.022 \text{ x} 10^{23} \text{ ions}$	Molarity = M = mole of solute
$h = 6.626 x 10^{-34} Js$	$Motarity = M = \frac{1}{L \text{ of solvent}}$
$1 \text{ J (Joule)} = 1 \text{ kg} \frac{\text{m}^2}{s^2}$	n (number of moles) = $\frac{\text{mass}}{\text{Molar Mass}}$
$c = 3.0x10^8 m/s$	Quantum Maghaniag
Mass of an Electron = $9.10939 \times 10^{-31} kg$	Quantum Mechanics
Mass of a Proton = $1.67 \times 10^{-27} kg$	$c = \lambda \gamma$
Mass of a Neutron = $1.67 \times 10^{-27} kg$	$E = mc^2$
$R = 0.0821 \frac{Latm}{molK}$	$\lambda = \frac{h}{n}$
$R = 8.31 \frac{J}{molK}$	$\hat{H}\psi = E\psi$
$V.P.(H_2O,373K) = 760torr$	$\Delta x * m \Delta v \ge \frac{h}{4\pi}$

Maximum Occupancy = $2n^2$

Solubility Rules

- 1. All alkali metal salts are soluble.
- 2. All ammonium (NH_4^+) salts are soluble.
- 3. All chlorides, bromides, and iodides are soluble except those of Ag^+ , $Hg_2^{2^+}$, and Pb^{2^+} .
- 4. All nitrates, chlorates, and perchlorates are soluble.
- 5. All sulfates except those of Ca^{2+} , Sr^{2+} , Ba^{2+} , Pb^{2+} , Hg_2^{2+} , and Ag^+ .
- 6. All carbonates, chromates, oxalates, and phosphates are insoluble except those of the alkali metals and ammonium.
- 7. All hydroxides are insoluble except those of the alkali metals.

Bonding

Formal Charge = V - (L + 0.5 S)

- V = Number of Valence Electrons
- L = The Number of Lone Pair Electrons
- S = The Number of Shared Electrons

Name	Section Number
Solutions	Acid-Base
$P = X_1 \bullet P^o$	$\pi U = \log U^{+}$
$m = molality = \frac{mol of solute}{mol of solute}$	$p\Pi = -\log[\Pi]$
kg of solvent	$pOH = -\log[OH]$
$\Delta T_f = -m \bullet K_f$	$K_w = K_a K_b$
$\Delta T_b = m \bullet K_b$	pm + pom = 14
$X_1 = \text{mole fraction} = \frac{n_1}{n_1}$	$H_{A}(aa) \Leftrightarrow H^{+}(aa) \vdash A^{-}(aa)$
n _{total}	$IIA(uq) \Leftrightarrow II^{-1}(uq) + A^{-1}(uq)$
$\frac{\Pi = MRT}{Coordinate Coordinate Coordinat$	$K_a = \frac{\lfloor \Pi \rfloor \lfloor A \rfloor}{\lceil HA \rceil}$
$\frac{Gas Laws}{PV} = P.T.$	
$V_{1}T_{1} = V_{2}T_{2}$ $V_{2}T_{2} = V_{2}T_{2}$	$K = 1 \times 10^{-14}$ at $25^{\circ}C$
PV = nRT	$M_w = 1 \times 10^{\circ}$ at 25°C
PV_1 P_2V_2	$B(aa) \Leftrightarrow BH^+(aa) + OH^-(aa)$
$\frac{1}{T_1} = \frac{2}{T_2}$	$[RH^+][OH^-]$
$Kelvin=^{\circ}C+273.15$	$K_b = \frac{[BH]}{[B]}$
n^2 n^2	[~]
$(P+a\frac{1}{V^2})(V-nb) = nRT$	$pKa = -\log K_a$
$P_{total} = P_1 + P_2 + \ldots + P_n$	$pKw = 14 \text{ at } 25^{\circ}C$
$KE(mol) = \frac{3}{2}RT$ (monoatomic)	/[base])
	$pH = pKa + \log\left(\frac{[base]}{[acid]}\right)$
KE (particle) = $\frac{1}{2}mu^2$	([])
2	

Thermodynamics

Thermodynamics
$$q = mC\Delta T$$
 $E = q + w$ $q_v = nC_v\Delta T$ $w = -P_{ext}\Delta V$ $q_p = nC_p\Delta T$ $C_p = \frac{5}{2}R$ (monoatomic ideal gas) $dS = \frac{dq}{T}$ $C_v = \frac{3}{2}R$ (monoatomic ideal gas) $\Delta G = \Delta H - T\Delta S$ $\Delta H = q_p$ (constant temperature) $T_c = \frac{\Delta H}{\Delta S}$ $w_{rev} = -nRT \ln\left(\frac{V_2}{V_1}\right)$ $C_{water} = 4.184 \frac{J}{molK}$

9