Recitation

26 October 2009

Group Problems

1. Rank the following in order of increasing acidity (same may be relatively equal).

NaBr, KNO₂, HClO₄, HNO₂, NH₄ClO₄, and NH₄NO₂.

- 2. Calculate the pH of the following solutions: a. 0.1 M NaF (HF $K_a = 7.2 \times 10^{-4}$)
 - b. $0.1 \text{ M NH}_4\text{Cl}$ (NH₃ K_b = 1.8×10^{-5})
 - c. $0.1 \text{ M NH}_4\text{C}_2\text{H}_3\text{O}_2$ (Ammonium Acetate)

 $HC_{2}H_{3}O_{2}$ $K_{a} = 1.8 \times 10^{-5}$ NH₃, $K_{b} = 1.8 \times 10^{-5}$

3. Calculate the pH of a solution of:a. 0.1 M HFb. 0.1 M HF and 0.1 M NaF

Explain using LeChatelier's Principle why the pH is different for the two solutions above.

- 4. What is meant by the capacity of a buffer? How do the following buffers differ in capacity? How do they differ in pH?
 - a. 0.01 M acetic acid and 0.01 M sodium acetate
 - b. 0.1 M acetic acid and 0.1 M sodium acetate
 - c. 1.0 M acetic acid and 1.0 M sodium acetate

5. Calculate the pH of a solution formed by mixing 100.0 mL of 0.100 M NaF (HF, $K_a = 7.2 \times 10^{-4}$) and 100.0 mL of 0.025 M HCl.

6. Using the acetate buffer, outline the steps needed to prepare a 20.0 L solution of the buffer. Identify specifically the number of moles needed to yield the desired pH of 5.1.

(acetic acid and sodium acetate, $K_a = 1.8 \times 10^{-5}$ for acetic acid)

- 7. How many moles of NaOH must be added to a 1.0 L solution of 2.0 M HC₂H₃O₂ ($K_a = 1.8 \times 10^{-5}$) to produce a solution buffered at each of the following pH values?
 - a. pH = pKa
 - b. pH = 4.00
 - c. pH = 5.00

Individual Problems

- 1. Calculate the pH of a solution that is 0.60 M HF and 1.00 M HF.
- 2. What relative ratios of NH_4Cl and NH_3 ($K_b = 1.8 \times 10^{-5}$) are needed to achieve the following buffered pH values?
 - a. 9.25
 - b. 9.61
 - c. 9.02

What is the working pH range for this buffer?

- 3. Using 1 L of the buffered solution in problem 1, calculate the pH observed after the following additions:
 - a. 100 mL of 1.0 M HCl is added
 - b. 100 mL of 1.0 M NaOH is added