Recitation

26 October 2009

Group Problems

1. Rank the following in order of increasing acidity (same may be relatively equal).
$\mathrm{NaBr}, \mathrm{KNO}_{2}, \mathrm{HClO}_{4}, \mathrm{HNO}_{2}, \mathrm{NH}_{4} \mathrm{ClO}_{4}$, and $\mathrm{NH}_{4} \mathrm{NO}_{2}$.
2. Calculate the pH of the following solutions:
a. 0.1 M NaF
$\left(\right.$ HF K $\left.\mathrm{K}_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
b. $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
$\left(\mathrm{NH}_{3} \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$
c. $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (Ammonium Acetate)
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$
$\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$
3. Calculate the pH of a solution of:
a. 0.1 M HF
b. 0.1 M HF and 0.1 M NaF

Explain using LeChatelier's Principle why the pH is different for the two solutions above.
4. What is meant by the capacity of a buffer? How do the following buffers differ in capacity? How do they differ in pH ?
a. $\quad 0.01 \mathrm{M}$ acetic acid and 0.01 M sodium acetate
b. $\quad 0.1 \mathrm{M}$ acetic acid and 0.1 M sodium acetate
c. $\quad 1.0 \mathrm{M}$ acetic acid and 1.0 M sodium acetate
5. Calculate the pH of a solution formed by mixing 100.0 mL of 0.100 M NaF (HF, $\mathrm{K}_{\mathrm{a}}=7.2 \times 10^{-4}$) and 100.0 mL of 0.025 M HCl .
6. Using the acetate buffer, outline the steps needed to prepare a 20.0 L solution of the buffer. Identify specifically the number of moles needed to yield the desired pH of 5.1. (acetic acid and sodium acetate, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$ for acetic acid)
7. How many moles of NaOH must be added to a 1.0 L solution of $2.0 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ to produce a solution buffered at each of the following pH values?
a. $\mathrm{pH}=\mathrm{pKa}$
b. $\mathrm{pH}=4.00$
c. $\mathrm{pH}=5.00$

Individual Problems

1. Calculate the pH of a solution that is 0.60 M HF and 1.00 M HF .
2. What relative ratios of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$ are needed to achieve the following buffered pH values?
a. 9.25
b. 9.61
c. 9.02

What is the working pH range for this buffer?
3. Using 1 L of the buffered solution in problem 1 , calculate the pH observed after the following additions:
a. $\quad 100 \mathrm{~mL}$ of 1.0 M HCl is added
b. $\quad 100 \mathrm{~mL}$ of 1.0 M NaOH is added

