Recitation 2 November 2009

Group Problems

- 1. Sketch a titration curve for a weak acid titrated with a strong base. Identify the following points on the curve.
 - a. The equivalence point
 - b. The buffering region
 - c. pH = pKa
 - d. pH depends only on [HA]
 - e. pH depends only on $[A^-]$
 - f. pH depends only on the amount of excess strong base added.
- 2. Consider the titration of 50 mL of 1.0 M benzoic acid with standardized 0.5 M NaOH.
 - (a.) Identify the halfway to the equivalence point, (b.) Identify the equivalence point, and
 - (c.) Calculate the pH at the following points during the titration:
 - i. At the starting point in which no NaOH has been added.
 - ii. After 25 mL of 0.5 M NaOH has been added.
 - iii. After 50 mL of 0.5 M NaOH has been added.
 - iv. After 100 mL of 0.5 M NaOH has been added.
 - v. After 150 mL of 0.5 M NaOH has been added.

The K_a for Benzoic Acid is 6.4 x 10⁻⁵.

- Consider the titration of 40.0 mL of 0.200 M HClO₄ with 0.100 M KOH. Calculate the pH of the resulting solutions after the following volumes of KOH has been added.
 (a.) 0 mL
 (b.) 10.0 mL
 (c.) 40.0 mL
 (d.) 80.0 mL
 (e.) 100.0 mL
- 4. Calculate the molar solubility of each of the following compounds in moles per liter and grams per liter (Ignore any acid-base properties).
 - a. Ag_3PO_4 (Ksp = 1.8 x 10⁻¹⁸)
 - b. $CaCO_3 (Ksp = 8.7 \times 10^{-9})$
- 5. Calculate the solubility (in mol/L) of Fe(OH)₃ (Ksp = 4.0×10^{-38}) in each of the following instances.
 - a. Water (pH = 7)
 - b. A buffered solution at pH = 5.0
 - c. A buffered solution at pH = 11.0

Individual Problems

- 1. Calculate the pH for the titration of a 50-mL solution of 1.0 M pyridine C_5H_5N (K_b = 1.7 x 10⁻⁹) with 0.25 M HCl.
 - a. At the starting point with no HCl added.
 - b. After 50 mL of HCl is added.
 - c. After 100 mL of HCl is added.
 - d. After 200 mL of HCl is added
 - e. After 250 mL of HCl is added

Sketch the titration curve.

- 2. The Ksp for silver sulfate (AgSO₄) is 1.2×10^{-5} . Calculate the solubility of silver sulfate in each of the following.
 - a. Water
 - b. 0.10 M AgNO₃
 - c. $0.20 \text{ M} \text{ K}_2 \text{SO}_4$