Recitation 2 November 2009

Group Problems

1. Sketch a titration curve for a weak acid titrated with a strong base. Identify the following points on the curve.
a. The equivalence point
b. The buffering region
c. $\mathrm{pH}=\mathrm{pKa}$
d. pH depends only on [HA]
e. pH depends only on $\left[\mathrm{A}^{-}\right]$
f. pH depends only on the amount of excess strong base added.
2. Consider the titration of $50-\mathrm{mL}$ of 1.0 M benzoic acid with standardized 0.5 M NaOH .
(a.) Identify the halfway to the equivalence point, (b.) Identify the equivalence point, and
(c.) Calculate the pH at the following points during the titration:
i. At the starting point in which no NaOH has been added.
ii. After $25-\mathrm{mL}$ of 0.5 M NaOH has been added.
iii. After $50-\mathrm{mL}$ of 0.5 M NaOH has been added.
iv. After $100-\mathrm{mL}$ of 0.5 M NaOH has been added.
v. After $150-\mathrm{mL}$ of 0.5 M NaOH has been added.

The K_{a} for Benzoic Acid is 6.4×10^{-5}.
3. Consider the titration of 40.0 mL of $0.200 \mathrm{M} \mathrm{HClO}_{4}$ with 0.100 M KOH . Calculate the pH of the resulting solutions after the following volumes of KOH has been added.
(a.) 0 mL
(b.) 10.0 mL
(c.) 40.0 mL
(d.) 80.0 mL
(e.) 100.0 mL
4. Calculate the molar solubility of each of the following compounds in moles per liter and grams per liter (Ignore any acid-base properties).
a. $\quad \mathrm{Ag}_{3} \mathrm{PO}_{4}\left(\mathrm{Ksp}=1.8 \times 10^{-18}\right)$
b. $\mathrm{CaCO}_{3}\left(\mathrm{Ksp}=8.7 \times 10^{-9}\right)$
5. Calculate the solubility (in mol/L) of $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{Ksp}=4.0 \times 10^{-38}\right)$ in each of the following instances.
a. Water $(\mathrm{pH}=7)$
b. A buffered solution at $\mathrm{pH}=5.0$
c. A buffered solution at $\mathrm{pH}=11.0$

Individual Problems

1. Calculate the pH for the titration of a $50-\mathrm{mL}$ solution of 1.0 M pyridine $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{~K}_{\mathrm{b}}=1.7\right.$ $\mathrm{x} 10^{-9}$) with 0.25 M HCl .
a. At the starting point with no HCl added.
b. After $50-\mathrm{mL}$ of HCl is added.
c. After $100-\mathrm{mL}$ of HCl is added.
d. After $200-\mathrm{mL}$ of HCl is added
e. After $250-\mathrm{mL}$ of HCl is added

Sketch the titration curve.
2. The Ksp for silver sulfate $\left(\mathrm{AgSO}_{4}\right)$ is 1.2×10^{-5}. Calculate the solubility of silver sulfate in each of the following.
a. Water
b. $0.10 \mathrm{M} \mathrm{AgNO}_{3}$
c. $0.20 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$

