Chapter 25: Transcription and RNA Processing

Matching Or Fill In

Choose the correct answer from the list. Not all the answers will be used.

1)	(omit the red questions) Eukaryotic RNA molecules are alt intervening sequences called	ered by removal of
2)	An AT-rich region found in eukaryotic promoters is called the	A) Rho factor B) introns
3)	The DNA strand that serves as a template during transcription is known as the or noncoding strand.	C) eukaryotes D) introns E) operons F) structural
4)	Prokaryotic genetic units called typically contain genes with related functions.	G) AUG box H) promoters I) antisense
5)	Protein-coding genes are also known as genes.	J) exons K) nucleolus L) TATA box
6)	Eukaryotic rRNA genes are transcribed and processed in the	L) TATA box
7)	Termination of bacterial transcription often requires a prote	ein known as
8)	The expressed sequences of eukaryotic pre-mRNAs are known	own as
9)	In, RNA polymerase does not include a removable	sigma factor.
10)	GC boxes function analogously to prokaryotic	
	Terms not used: D) introns, G) AUG box	
Fill In	Questions	
11)	In prokaryotes, RNA polymerase binds to nucleotide sequences kn recognized by the corresponding sigma factor.	own as that are
12)	The term rRNA refers to RNA.	
13)	Transcriptional activators that can have variable positions and orientations are called	

Chapter 25: Transcription and RNA Processing

14)	Most mRNAs have well defined 3' ends terminating in poly(A) tails of ~ 250 nucleotides.		
15)	The fact that some eukaryotic rRNAs are self-splicing indicates that RNA can act as an		
16)	The only known universal transcription factor is		
17)	cellular RNAs are transcribed from templates.		
Mult	iple Choice Questions		
18)	 How does the preinitiation complex begin to form at a TATA box-containing promoter? A) RNAP binds to the sigma factor. B) RNAP binds to the initiator (Inr) element. C) TATA-binding protein binds to the TATA box. D) RNAP binds to the Rho factor. E) none of the above. 		
19)	Which of the following types of RNA undergo posttranscriptional modifications? A) mRNA B) rRNA C) tRNA D) all of the above E) none of the above		
20)	 Why is TBP referred to as a universal transcription factor? A) TBP suppresses initiation by RNAP I, RNAP II, and RNAP III. B) A single molecule of TBP initiates transcriptional processes. C) TBP is present in both prokaryotic and eukaryotic organisms. D) TBP catalyzes the synthesis of all known transcription factors. E) TBP is required for initiation by RNAP I, RNAP II, and RNAP III. 		
21)	Which posttranscriptional modification serves to identify the eukaryotic translation start site? A) poly(A) tail. B) 5' cap consisting of 7-methylguanosine. C) intron excision. D) alternative splicing. E) exon skipping.		

Short Answer Questions

Write your answer in the space provided or on a separate sheet of paper.

Describe the transcription bubble formed during the chain elongation stage of RNA synthesis.

Chapter 25: Transcription and RNA Processing

- 23) RNA synthesis is much more error-prone that DNA synthesis. Why is this tolerable?
- Explain why the pre-mRNAs of many eukaryotic genes are much larger than expected from the known sizes of the proteins they encode.
- 25) Explain how it is possible for a single gene to encode several proteins that may have significantly different functions.
- 26) Describe how DNA footprinting techniques can be used to identify promoter regions.