# Introduction to Metabolism, Study Guide

## **Matching Or Fill In**

Choose the correct answer from the list. Not all the answers will be used.

| 1)  | Drokomyotog that are able to gynthegize all of their                                                                                                    |                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 1)  | Prokaryotes that are able to synthesize all of their cellular components from simple molecules such as $CO_2$ , $H_2O$ , $NH_3$ , and $H_2S$ are called | <ul><li>A) anabolic</li><li>B) adenylate kinase</li></ul>                                 |
| 2)  | Organisms that require oxygen are called                                                                                                                | C) <b>E</b> °'                                                                            |
| 3)  | Biomolecules are synthesized from simpler components in pathways.                                                                                       | <ul> <li>D) catabolic</li> <li>E) NAD<sup>+</sup></li> <li>F) obligate aerobes</li> </ul> |
| 4)  | 1,3-Bisphosphoglycerate is a type of                                                                                                                    | <ul><li>G) acyl phosphate</li><li>H) proteomics</li></ul>                                 |
| 5)  | The enzyme catalyzes the reaction, $PP_i \rightarrow 2$<br>$P_i$ .                                                                                      | <ul><li>I) NADPH</li><li>J) pyrophosphatase</li><li>K) autotrophs</li></ul>               |
| 6)  | The enzyme catalyzes the transfer of a phosphoryl group from ATP to AMP.                                                                                | L) oxidation<br>M) $\Delta G^{\circ'}$                                                    |
| 7)  | A loss of electrons from a substance is known as                                                                                                        |                                                                                           |
|     | ·                                                                                                                                                       |                                                                                           |
| 8)  | The oxidized form of NADH is                                                                                                                            |                                                                                           |
| 9)  | The standard reduction potential at the biochemical standard state is symbolized as                                                                     |                                                                                           |
| 10) | The study of the complete set of proteins synthesized in the cell is called                                                                             |                                                                                           |

## **Fill In Questions**

- 11) The rate of flow of metabolites through a metabolic pathway is referred to as\_\_\_\_\_.
- 12) \_\_\_\_\_ is the process by which nutrients are degraded in order to salvage their components and/or to generate energy.
- 13) The reactants, intermediates, and products of metabolism are all referred to as \_\_\_\_\_.

- 14) A bond whose hydrolysis proceeds with large negative value of  $\Delta G^{\circ}$  is often referred to as a \_\_\_\_\_ bond.
- 15) ATP contains one phosphoester bond and two \_\_\_\_\_ bonds.
- 16) The process by which ATP is formed by the direct transfer of a phosphoryl group to ADP from a "high-energy" compound is referred to as \_\_\_\_\_\_ phosphorylation.
- 19) The reduction of  $NAD^+$  involves \_\_\_\_\_\_ ion transfer.
- 20) Two widely used electron carriers in metabolism are NAD<sup>+</sup> and \_\_\_\_\_.

#### **Multiple Choice Questions**

- 21) Organisms that are poisoned by oxygen are :
  - A) obligate aerobes
  - B) facultative anaerobes
  - C) autotrophs
  - D) chemolithotrophs
  - E) obligate anaerobes
- 22) Which of the following is at a higher level of oxidation than CH<sub>3</sub>CHO?
  - A) CH<sub>3</sub>CH<sub>2</sub>OH
  - B) CH<sub>3</sub>CH<sub>3</sub>
  - C)  $CH_2=CH_2$
  - D) CH<sub>3</sub>CO<sub>2</sub>H
  - E) none of the above

23) Consider the following metabolic reaction: Succinyl-CoA + Acetoacetate  $\rightarrow$  Acetoacetyl-CoA + Succinate  $\Delta G^{\circ \circ} = -1.25 \text{ kJ/mol}$ What is the  $K_{eq}$  for this reaction at 25°C?

- A) 1.66
- B) 0.602
- C) 1.00
- D)  $4.22 \times 10^2$
- E) 03.21
- 24) Consider the following metabolic reaction:

Succinyl-CoA + Acetoacetate  $\rightarrow$  Acetoacetyl-CoA + Succinate

## $\Delta G^{\circ} = -1.25 \text{ kJ/mol}$

The  $\Delta G^{\circ}$  for the hydrolysis of Succinyl-CoA is -33.9 kJ/mol. What is the  $\Delta G^{\circ}$  for the hydrolysis of Acetoacetyl-CoA:

Acetoacetyl-CoA  $\rightarrow$  Acetoacetate + CoA

A) -35.2 kJ/mol
B) --32.7 kJ/mol
C) +32.7 kJ/mol
D) +35.2 kJ/mole
E) none of the above

25) Consider the following metabolic reaction:

Succinyl-CoA + Acetoacetate  $\rightarrow$  Acetoacetyl-CoA + Succinate  $\Delta G^{\circ \circ} = -1.25 \text{ kJ/mol}$ 

This reaction is:

A) favorable under standard conditions.

B) not favorable under standard conditions.

C) always exergonic and can never proceed in the opposite direction.

D) spontaneous as written when [succinate] and [acetoacetyl-CoA] are high.

E) None of the above

26) The  $K_{eq}$  is 0.503 at 25°C for the following reaction. What is the  $\Delta G^{\circ}$  for this reaction? D-Glucose-6-phosphate  $\rightarrow$  D-Fructose-6-phosphate

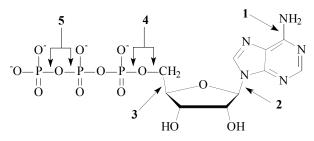
- A) -1,700 J/mol
- B) -2,870 J/mol

C) +143 J/mol

- D) +1.70 kJ/mol
- E) none of the above

27) Consider the following metabolic reaction:

2-Phosphoglycerate  $\rightarrow$  3-Phosphoglycerate  $\Delta G^{\circ} = -4.40 \text{ kJ/mol}$ 


What can be said about this reaction when the concentration of 2-phosphoglycerate is 0.490 mM and the concentration of 3-phosphoglycerate is 2.90 mM at  $25^{\circ}$ C?

- A) This reaction is endergonic under these conditions.
- B) This reaction is exergonic under these conditions.
- C) This reaction is at equilibrium under these conditions.
- D) This reaction is not favorable under standard conditions.
- E) 40 kJ of work can be done by this reaction under these conditions.
- 28) Consider the following metabolic reaction:

3-Phosphoglycerate  $\rightarrow$  2-Phosphoglycerate  $\Delta G^{\circ} = +4.40 \text{ kJ/mol}$ 

What is the  $\Delta G$  for this reaction when the concentration of 2-phosphoglycerate is 0.290 mM and the concentration of 3-phosphoglycerate is 2.90 mM at 37°C?

- A) +10.3 kJ/mol
- B) -1.54 kJ/mol
- C) -1.30 kJ/mol
- D) -5.93 kJ/mol
- E) -4.40 kJ/mol
- Which of the numbered arrows in the figure to the right points toward a "high-energy" phosphoanhydride bond?
  - A) 1
  - B) 2
  - C) 3



- D) 4
- E) 5
- 30) Given that the standard reduction potential of oxaloacetate is -0.166 V and the standard reduction potential of NAD<sup>+</sup> is -0.315 V. What is the  $\Delta \mathbf{\mathcal{E}}^{\circ \circ}$  for the oxidation of malate by NAD<sup>+</sup>: Malate + NAD<sup>+</sup>  $\rightarrow$  Oxaloacetate + NADH + H<sup>+</sup> A) -4.81 V B) + 4.81 V C) -0.149 V D) +0.149 V
  - E) +0.0523 V

### **Short Answer Questions**

Write your answer in the space provided or on a separate sheet of paper.

- 31) What reaction rates describe the flux of an intermediate in a metabolic pathway?
- 32) List four ways by which cells control or regulate the flux through metabolic pathways.
- 33) What are two factors that contribute to the large negative standard free energy change for the reaction ATP  $\rightarrow$  ADP + P<sub>i</sub>?
- 34) What is meant by the term "substrate-level phosphorylation?"
- 35) What are isozymes?
- 36) Briefly explain how a reaction that has a positive value of  $\Delta G^{\circ}$  can be exergonic and hence proceed as written from left to right.
- 37) What is the importance of ATP's intermediate phosphoryl group-transfer potential to energy metabolism in a cell?
- 38) Why are the vitamins niacin and riboflavin necessary for metabolism?
- 39) What is the relationship between the electromotive force and the  $\Delta G$  of a reaction?
- 40) Briefly describe how isotopic labeling techniques have revolutionized the study of metabolism.
- 41) What is the advantage of "pyrophosphate cleavage" of ATP?
- 42) What is the role of Acetyl-CoA in catabolism?

Answer: Acetyl-CoA is the common product of the degradation of proteins, carbohydrates, and fats. Acetyl-CoA then enters the citric acid cycle for further catabolism .
Section: 1
Level of Difficulty: moderate

- 43) Why are two different electron carriers, NAD<sup>+</sup> and FAD, involved in metabolism?
- 44) What are the terminal electron acceptors in aerobic and anaerobic organisms?.
- 45) What differentiates "high-energy" compounds and "low-energy" compounds? Provide examples.