

Evolution via Natural Selection

Based on Three Principles:

- Variation (in genes)
- Reproduction
- Competition
 - genetic selection

Looking for receptors: the "traditional" approach

- make mutants (site-directed mutagenesis)
- screen for function

Protein Engineering

Engineering nuclear receptors for <u>any small molecule</u>

- Transform mutant libraries of nuclear receptors into yeast
- Plate onto media containing small molecules of interest
- Chemical Complementation: only yeast harboring a receptor that activates transcription in response to the small molecule survive (and form a colony)

- To completely explore amino acid space in a 100 residue protein requires 20¹⁰⁰ proteins.
- 20¹⁰⁰ = 1.3 * 10¹³⁰

Protein random mutagenesis perspective

- To completely explore amino acid space in a 100 residue protein requires 20¹⁰⁰ proteins.
- 20¹⁰⁰ = 1.3 * 10¹³⁰
- There are (only) ~1 * 10⁵⁷ protons in the sun

	elected	Librarv				
	1268	A271	A272	1310	F313	L436
1		deleted		del	eted	deleted
2		deleted		deleted		deleted
3	V	Р	Р		S	deleted
4		deleted		deleted		deleted
5		deleted		deleted		А
6		deleted		del	eted	deleted
7		deleted		del	eted	deleted
8		deleted		deleted		deleted
9		deleted		deleted		F
Sele	Licted Li	brary A271	A272	1310	F313	L436
1	<u>V</u>		V	L	M	
2	<u>v</u>			V	<u> </u>	
3				IVI C	V	-
4	A			5	V	F
6	Δ		V		Δ	F
7	1		•	V	1	•
8	Ē	V		Ĺ	Ĺ	
9	V	V		L	V	
10	V		V	М	S	М
	۸			M	Α	Т
11	A					

Г

Outline

- Principles of evolution
- Nuclear receptors
- Application to gene therapy
- Protein engineering through sitedirected mutagenesis
- Protein engineering through genetic selection- "chemical complementation"

