[bookmark: _Toc137137281][bookmark: _Hlk118015197][bookmark: _Hlk138950021][bookmark: _Hlk118015227]Origins by Chemical Evolution. 
[bookmark: _Hlk198213206][bookmark: _Hlk198361119][bookmark: _Hlk194079522][bookmark: _Hlk194001187][bookmark: _Hlk177206201]Chemical evolution provides an alternative to direct synthesis of biopolymers. Our goal here is to articulate a general framework of chemical evolution rather than listing of specific chemical pathways. In Chemical evolution (Figure 4), the transformation from prebiotic chemistry to proto-biochemistry was driven at the ensemble, or system, level by prolonged selection and continual regeneration of diversity. Evolution acted on environmentally generated fluxes of molecular ensembles, which were selected on the basis of broad ranges of properties and behaviors, including water solubility, rates of condensation and hydrolysis, catalysis, self-assembly, co-assembly, homochirality, autocatalysis, and other emergent phenomena. Selection and diversification were recursive (1). In this model, there is no teleology; ensembles respond in real time to selective pressures. 
[bookmark: _Hlk142054291][bookmark: _Hlk192691880][bookmark: _Hlk193299279][bookmark: _Hlk193299269][bookmark: _Hlk192665751][bookmark: _Hlk196934540][bookmark: _Hlk194309997][bookmark: _Hlk178412036][bookmark: _Hlk137502966][image: A diagram of a model of a chemical evolution

AI-generated content may be incorrect.]Figure 4. A schematic representation of principles of chemical evolution, in which chemical energy is harvested during wet-dry cycling. Wet-dry cycling is not experimentally challenging, and this model is amenable to validation and modification by experiment. A diverse ensemble of small molecules [complex mixtures of organic compounds (CMOC) (5-12)] are subjected to selection. In this framework, CMOC, for example as observed in the asteroid Bennu (2), is sculpted by unremitting selection, with shifting basis. Molecules produced by selection for one criterion are transformed, reselected by a different criterion, re-transformed, and are reselected. In a real system many of the isolated steps shown in this scheme would happen concurrently and competitively, and the products of many steps can directly feed back into previous processes. This model predicts that proto-biopolymers are composed of building blocks that are not necessarily available in the original input CMOC. Step 1: Accumulation of CMOC. Step 2: Selection for solubility in water. Insoluble species are not involved in chemical transformations but remain important because they can contribute to physical partitioning. Step 3: Selection for high rates of condensation during dry phases, for example thioester > ester > peptide. Step 4: Selection for exchange, for example thioester and ester are converted to peptide. Step 5: Selection for low rates of hydrolysis during wet phases (peptide< ester<thioester). Step 6: Selection for assembly. Assembled oligomers are recalcitrant and hydrolyze more slowly than free oligomers (3-5). Step 7: Selection for catalysis. Both synthesis and degradation can be subject to catalytic acceleration. Step 8: Some products for catalysis proceed through steps 2-7 and are incorporated into assemblies. Steps 9 and 10: A small fraction of the catalytic assemblies are self-catalytic and can produce species that contribute to formation and catalysis of the same assembly (6). Self-catalytic assemblies will grow in population over other assemblies. Step 11: Catalytic assemblies and produce species that alter the assemblies and the catalytic output of the assemblies, pushing the system away from the initial chemical composition. Step 12: The conversion of complex functional assemblies to a functional system that is independent of short-term environmental cycling. Step 13: Invention of the central dogma, which is dependent on highly sophisticated polymers produced by chemical evolution. The dashed arrows indicate indirect transitions of unknown mechanism. The dashed arrows represent aggregated processes that are poorly understood. The bottom panel is a key explaining the molecular symbolism. This schematic omits some mechanisms of selection such as compartmentalization. Wet-dry, freeze-thaw, or pressure cycling are examples of possible drivers of chemical evolution.
[bookmark: _Hlk197106967][bookmark: _Hlk125125029]
[bookmark: _Hlk211896170]In chemical evolution, multiple types of oligomers and polymers coexisted, competed and cooperated (Figure 3b). The emergence of biopolymers was protracted, incremental, and progressive (Figure 4). The boundary between chemistry and biology was indistinct. Prebiotic chemistry was continuous with proto-biology. This model integrates chemical principles with evolutionary concepts including variation and selection (7), exaptation (1, 8), extinction (9), symbiosis, entanglement, co-evolution (10), continuity (11), absence of foresight (12), and creativity (13, 14). In this model, most of the molecular “ancestors” of today’s biopolymers are likely to be extinct - we observe only their distantly related progeny. Chemical evolution is continuous with Darwinian evolution.
[bookmark: _Hlk198213765][bookmark: _Hlk192570613][bookmark: _Hlk192419513][bookmark: _Hlk194303763]In the chemical evolution model, fluxes of complex mixtures of organic compounds (CMOCs) (2, 15-17) were sculpted and transformed in a prolonged and undulating process to generate polymer backbones and sidechains (3, 4, 18-20). In a simple version of the model, chemical evolution was planet wide. Surfaces covered with CMOC were subjected to oscillating water activity on a temperate spinning planet in proximity to the sun. Bonds formed during dry phases and bonds broke during wet phases. Initially there was no clear boundary between the evolving system and the environment—the chemical system was part of the environment. A weakening of the link between the chemical system and the environment conferred advantage by facilitating persistence during unfavorable conditions such as acute temperature variation or periods of reduced flux of CMOC, and led eventually to the emergence of membranes, pumps, pores, and metabolism, to create a system distinct from the environment.

Requirements of Origins by Chemical Evolution.
[bookmark: _Hlk215688490][bookmark: _Hlk197943670]The model of origins of life by chemical evolution is driven by ordinary environmental cycles—day-night and seasonal rhythms—whose variability across latitude and local geography provides broad scope for chemical exploration. In this model, evolving chemical systems display foundational features that foreshadow biological evolution. A generation corresponds to a single environmental cycle; information resides in the non-random composition of molecular ensembles (variation) that can persist across cycles through kinetic trapping (inheritance); fitness is reflected in the differential survival and accumulation of compounds or ensembles across repeated cycles; and replication emerges as a late evolutionary innovation for enhancing persistence. Selection arises naturally when molecules differ in their propensity to form during condensation reactions, their intrinsic resistance to hydrolysis, and their participation in recalcitrant assemblies or autocatalytic networks. These parallels suggest that core principles of evolution—variation, selection, and inheritance—can arise prior to life, embedded in the dynamics of complex chemical systems shaped by their environments.
[bookmark: _Hlk197945656][bookmark: _Hlk193488120][bookmark: _Hlk140731238][bookmark: _Hlk211931844][bookmark: _Hlk125933455][bookmark: _Hlk193300094][bookmark: _Hlk193489568]Selection. Selection is intrinsic to both Darwinian and chemical evolution (7, 21). As in biology, selection in chemical evolution operates continuously on adapting, perpetually shifting heterogeneous systems. As illustrated in Figure 4, early phases of prebiotic chemical evolution select and transform mixtures based on several properties: (i) solubility in water, (ii) propensity to undergo condensation–dehydration reactions, (iii) capacity for chemically catalyzed transitions—such as ester–amide exchange—that produce kinetically trapped species, (iv) resistance to hydrolysis conferred by molecular assembly, and eventually, (v) emergence of autocatalytic and heterocatalytic pathways for precursor synthesis. The dynamic nature of selection in chemical evolution parallels Darwinian evolution, in which shifting environmental conditions cause population characteristics to continuously reshape fitness landscapes. As Jacob suggested (12), a creative molecular phase of chemical evolution preceded creative sequence-based Darwinian evolution. In the model proposed here, chemical evolution can create complex biological molecules such as nucleic acids and proteins whose formation is challenging via direct chemical synthesis on the early Earth. 
[bookmark: _Hlk198213637]Catalysis. In this model, chemical evolution, driven in part by selection for resistance to hydrolysis, produces recalcitrant assemblies. These same assemblies also confer catalytic advantages. Catalytic proficiency increases dramatically with assembly (22, 23). The assembly-catalysis coupling is indicated by the prevalence of catalysis across assemblies of biopolymer classes and in non-biological systems: catalytic DNAs (24), catalytic RNAs (25, 26), catalytic glycans (27-29), catalytic peptides (30), catalytic proteins (31), catalytic micelles and coacervates (32, 33), and catalytic minerals (34). The generality of this phenomenon is striking: in the presence of Fe2+, all structured RNAs can catalyze electron transfer (35, 36), suggesting that catalysis is an emergent property of assembly.
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