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The Levinthal paradox: yesterday and today
Martin Karplus

A change in the perception of the protein folding
problem has taken place recently. The nature of the
change is outlined and the reasons for it are presented.
An essential element is the recognition that a bias
toward the native state over much of the effective
energy surface may govern the folding process. This
has replaced the random search paradigm of Levinthal
and suggests that there are many ways of reaching the
native state in a reasonable time so that a specific
pathway does not have to be postulated. The change in
perception is due primarily to the application of
statistical mechanical models and lattice simulations to
protein folding. Examples of lattice model results on
protein folding are presented. It is pointed out that the
new optimism about the protein folding problem must
be complemented by more detailed studies to
determine the structural and energetic factors that
introduce the biases which make possible the folding
of real proteins. 
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An understanding of the mechanism by which a polypep-
tide chain folds from the denatured coil state to the native
protein structure is an essential element of structural
biology. Despite the considerable effort, both theoretical
and experimental, that has been devoted to this problem,
we are still not able to give a detailed description of the
mechanism by which any protein folds [1]. Recently there
has been a major change in the perception of the inherent
difficulty of what is often called the ‘protein folding
problem’. Actually, there are two ‘protein folding prob-
lems’. The first is concerned with the prediction of the
three-dimensional structure of a protein from its sequence
and the second, which is the one discussed here, is con-
cerned with the kinetics and dynamics of the actual
folding process. A complete solution of the second
problem would, of course, simultaneously solve the first.
However, it is more likely that the prediction of the native
structure will be achieved by other methods, such as
threading [2] and homology modelling [3,4], that are based
mainly on the analysis of known structures, rather than by
directly folding a polypeptide chain. 

It is not a great exaggeration to say that the pessimistic
viewpoint of yesterday (“It is impossible for proteins to
fold to the native state, even though they do so readily in
solution”) has been replaced by the optimistic viewpoint
of today (“It is obvious that proteins should be able to fold
rapidly to the native state”). In this brief report, I shall try
to make clear the nature of this dramatic change, to indi-
cate how it came about and to outline what remains to be
done to obtain an understanding of protein folding. 

Changes in perception are an essential element in the
advancement of science. Often, the key to progress is not
that a given view has been disproved and that the view
that replaces it has been proved. Instead, the important
element is the acceptance of the new view by the scien-
tific community. That is what appears to be happening in
the case of the protein folding problem. The present situ-
ation is somewhat analogous to the recognition nearly 20
years ago of the role of protein motion in protein function
[5]. The classic view of biological macromolecules in their
native state was static in character. The remarkable detail
evident in crystal structures led to an image of biomole-
cules with every atom fixed in place. DC Phillips, who
determined the first enzyme crystal structure, has written:
“The period 1965–75 may be described as the decade of
the rigid macromolecule. Brass models of DNA and a
variety of proteins dominated the scene and much of the
thinking” [6]. Even in 1980, Tanford stated that as a result
of packing considerations “the structure of proteins must
be quite rigid” [7]. Although it should have been self
evident that proteins, like other polymers, undergo signifi-
cant fluctuations at room temperature, only with the
advent of molecular dynamics simulations was the static
view of the structure of biomolecules replaced by a
dynamic picture [5,8,9]: the atoms of which biopolymers
are composed are in a state of constant motion at ordinary
temperatures and the X-ray structure provides the average
atomic positions in the crystal. Crystallographers acceded
to this viewpoint after a number of years and sometimes
even emphasize the parts of a molecule they do not see in
a crystal structure as evidence of motion [10]. 

The Levinthal paradox [11] dominated ideas about
protein folding until very recently. The essential concept
introduced by Levinthal is that the appropriate point of
reference for protein folding is a random search problem.
Taken literally, as it was by many people, this means that
all conformations of the polypeptide chain (except the
native state) are equally probable, so that the native state
can be found only by an unbiased random search. This
has been referred to as the ‘golf course’ model of the



protein potential energy surface [12]. For such a surface,
the time to find the native state is given by the number of
configurations of the polypeptide chain (say, 1070 for a
100-residue protein) multiplied by the time required to
find one configuration (say, 10–11 seconds). This leads to
an enormously long folding time (say, 1059 seconds or
about 1052 years). Since proteins generally fold in times
on the order of milliseconds to seconds (except for special
factors that slow the folding, such as proline isomerization
[13]), there was indeed a paradox. The ultimate statement
of the paradox has been given recently in the language of
computational complexity, i.e. the demonstration that the
random search problem posed by Levinthal is NP hard
[14–17]. An important point that emerged from these
studies is that an essential element of the complexity is
the presence of long-range interactions, which lead to the
well-known cooperative character of the folding transi-
tion. The problem would not be NP hard if each amino
acid could find its native conformation independently of
the others or if only near-neighbor interactions were
involved [17]. 

Levinthal’s solution to the protein folding problem was
that there were well-defined pathways to the native state
[18], so that protein folding was under ‘kinetic’ control; a
modern pedagogical description of this viewpoint is given
by Dill and Chan in [19]. Too little was known in 1969 to
make the pathway concept more specific or to test it
experimentally. Since then, there have been many propos-
als, based mainly on the known structures of proteins, to
restrict the conformational space that is searched and to
reduce the folding time to the experimental range. Exam-
ples include the nucleation-growth mechanism [20–22],
the diffusion-collision model [23,24], the framework
model [25], and the jigsaw-puzzle model [26]. Most of
these models are descriptive in character and do not
provide a means for estimating the folding time, which is
clearly an important element in a resolution of the
Levinthal paradox. The diffusion-collision model [23,24]
is an exception that has been used to relate the folding
time to certain system parameters [27,28]. Although the
various phenomenological models are discussed in the
experimental literature, they seem to have had relatively
little direct impact on experiments; there was no way to
determine which one, if any of them, was correct. More-
over, none of the models appears to have been accepted as
a resolution of the Levinthal paradox. 

In the past few years, the focus of approaches to the
protein folding problem has shifted from phenomenologi-
cal models to consideration of the general characteristics
of the energy surface of a polypeptide chain. This is emi-
nently reasonable since the energy surface is one of the
fundamental determinants of any reaction, whether a
small molecule reaction [29] or protein folding. The
change in focus is based on theoretical considerations

[12,30,31] and the use of lattice simulations to study
folding [32–34]. It makes explicit a simple concept that is
implicit in the phenomenological models. This is the fact
that, for any of the models to work, there must be ener-
getic factors that bias the folding process. For example,
only if a nucleus is stable, relative to the random coil struc-
tures, can it play a role in folding. This means that the dif-
ference in the energy and free energy between the
denatured and native state is reflected in some way not
only in the neighborhood of the native state (‘golf course’
surface) but over a significant portion of the surface
sampled during the folding process. 

Go and Abe in 1981 [35] made a pioneering study in this
area. By doing lattice Monte Carlo simulations for a bead
model of the polypeptide chain in two dimensions, they
showed that fast folding occurred if the stabilizing interac-
tions corresponded to those present in the native state.
This concordance between stabilizing interactions and the
native structure was referred to by Go as the ‘harmony
principle’ of protein folding [21]. Bryngelson and Wolynes
[12] developed a statistical mechanical model of protein
folding in 1989 that embodied the harmony principle of
Go; they used the term ‘principle of minimum frustration’,
based on the concept of frustration in spin glass theories
[31], to describe the importance of the relation between
the structural features sampled in folding and those of the
native state. The works of Go and Abe and Bryngelson
and Wolynes contained many insights that are important
for the present-day view of protein folding. However, they
appear to have had rather little impact on experimental-
ists. As sometimes happens in science, these papers were
published before their time had come. 

Although the focus on energy and free energy surfaces is
thus not really new, it is only in the past two or three years
that approaches that embody this concept have begun to
play a more central role in the field of protein folding.
This change is the result of the conjuncture of several
factors. The first factor is the growth of interest in protein
folding engendered to a large extent by the human and
other genome projects [36]. The ever-increasing number
of known protein sequences has raised a demand for
understanding how proteins fold and for the ability to
predict the native structure from the amino acid sequence.
This has led many people, including physicists and math-
ematicians as well as chemists and biologists, to become
involved in the protein folding problem. The second
factor is that experiments on protein folding and unfolding
have begun to provide detailed structural information that
can be used to test theoretical descriptions. Important
examples are data from NMR [37] and from protein engi-
neering [38]. Also very recently, it has become possible to
rapidly trigger folding and unfolding so that measure-
ments can be extended from milliseconds down to the
microsecond [39] and nanosecond timescales [40,41]. 
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The third factor was the publication of a Letter to Nature
[42] which gave the first full analysis of the effective
energy, entropy and free energy surface for the folding
reaction of a protein modelled by a Monte Carlo simula-
tion of a 27-bead heteropolymer with random interactions
on a 3D lattice. It provided an explicit resolution of the
Levinthal paradox: for this model, at least 30 out of 200
random sequences that were studied folded on the lattice
in times many orders of magnitude shorter than that
required to find the native state by sampling all of the
configurations; e.g. with ‘time’ measured in Monte Carlo
steps, only on the order of 5 × 107 steps were required for
folding by the 30 sequences, while there are on the order
of 1016 configurations in the conformational space. The
effective energy and free energy sampled at different tem-
peratures during the folding reaction are shown in
Figures 1 and 2 as a function of the fraction of native con-
tacts, Q, the progress variable for the reaction employed

for this case; other measures of structural change may also
be useful for describing the folding reaction [43]. At low
temperatures (Figure 1), folding begins with a rapid
hydrophobic collapse that leads to a decrease in energy
but does not increase the value of Q significantly from that
of the random coil state. In the region between Q = 0.2
and 0.7, the energy does not decrease (in fact, the surface
is seen to be ‘rough’) and the polypeptide chain makes a
slow stochastic search within the collapsed state to find
the transition region; the transition region is fairly close to
the native state, as indicated by the free energy profile
(Figure 1b). From this region, the chain folds rapidly to
the native state. By contrast, at high temperatures
(Figure 2) there is a nearly monotomic decrease in the
effective energy (an energy ‘basin’ or ‘funnel’) and there is
an entropic barrier (a folding ‘bottleneck’) in the free
energy surface prior to reaching the native state. As dis-
cussed in [42], the scenarios in Figures 1 and 2 may

Distance-Based Approaches to Protein Structure Determination III  The Levinthal paradox Karplus    S71

Figure 1

Folding of a 27-bead heteropolymer on a cubic lattice at low
temperature. (a) The average effective energy, E, as a function of Q,
the fraction of native contacts; there are 28 in the native state, which is
a 3 × 3 × 3 cube. (b) The average effective free energy, F, as a function
of Q. Results adapted from Figure 4 of [42] at T = 0.7. Details of the
definition and methods are given in [42]. 
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Figure 2

Folding of a 27-bead heteropolymer on a cubic lattice at high
temperature. (a,b) See Figure 1 for explanation. The sharp peak in (b)
near 0.9 appears to be an artefact of the lattice simulation. The same
sequence as in Figure 1 was used except that the native state was
stabilized by offsetting the energies of all 28 native contacts by a
random number from a Gaussian distribution with a mean of
0.0–0.8 kBT and a standard deviation of 0.1 kBT; T = 2. 
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describe the folding of small proteins; more complex sce-
narios are expected for larger proteins from lattice simula-
tions [44–46] and from experiment [47]. 

From a large number of trajectories calculated at a series
of temperatures, it was shown that folding has the simple
exponential behavior expected for a unimolecular reaction
with an activation barrier [48]. An Arrhenius plot of the
calculated rate constant as a function of temperature is
shown in Figure 3. At low temperatures, the rate constant
increases with temperature, as expected for an activation
energy dominated reaction. As the temperature increases,
there is a striking deviation from simple Arrhenius behav-
ior. The rate reaches a maximum and then decreases with
increasing temperature. This behavior results from the
fact that the activation free energy of the folding reaction,
which is energy dominated at low temperatures, becomes
entropy dominated at high temperatures; see the effective
energy and free energy surfaces shown in Figures 1 and 2.
Interaction parameters can be chosen (e.g. for different
‘sequences’ or different solution conditions) so that
behavior corresponding to Figure 1 or to Figure 2 occurs at
the ‘physiological’ folding temperature. 

The experimental rate constant for folding of several pro-
teins [49] has been shown to have the behavior illustrated
in Figure 3. At the normal folding temperature (i.e. in the
neighborhood of 25°C), the temperature dependence for
the fast-folding protein CI2, for example, shows Arrhe-
nius-type behavior (see Figure 1 of [49]), suggesting that
the activation barrier is energy dominated at that tempera-
ture. Comparison with the lattice results indicates that the
effective energy surface is not a simple funnel, i.e. the
surface may be intermediate between Figures 1 and 2. At
higher temperature, inverse Arrhenius behavior is
observed for CI2, as in Figure 3, which indicates that the
effective energy surface is more funnel-like. 

The awareness of lattice simulations in the wider commu-
nity of experimentalists is, in part, an accident. It is likely
to be due not to the Letter to Nature [42] itself, but to the
publication of a News & Views article written about it by
Baldwin [50]. It is recognized that more people read the
News & Views articles than the Letters to which they
refer. Baldwin pointed to a ‘new view’ of protein folding
that emerged from the Letter [42], which showed that
‘‘the ability to fold rapidly is possessed by the same
sequences that can form thermodynamically stable struc-
tures.’’ To characterize the change in viewpoint, it is
useful to quote from Baldwin’s News & Views [50] and
from one written by him only four years earlier [51] to
comment on experiments by Fersht and co-workers
[52,53] on a folding intermediate in barnase. 

In 1990, Baldwin wrote [51]: “After many years of scepti-
cism, it need no longer be doubted that proteins go

through a series of identifiable intermediate changes as
they fold up to assume their native conformations… the
ghost of the ‘jigsaw-puzzle’ model, which postulates a
random collection of folding intermediates, has now been
laid to rest.” 

This quotation, which clearly supports the pathway
concept of Levinthal, is to be contrasted with Baldwin’s
statement in 1994 [50]: “In the Monte Carlo simulations,
molecules with a given sequence undergo folding on
many different pathways at the same time. The simula-
tions therefore indicate that there is no unique pathway of
folding, and no unique transition state. On each of these
pathways there is a high-energy intermediate that is close
in structure to the native form, and thereby resembles the
unique transition state sometimes invoked by experimen-
talists; however, the folding of a 27-bead chain involves
about 103 such ‘transition states’. Until now, experimen-
talists have drawn an analogy between protein folding and
an ordinary chemical reaction that has a defined series of
intermediates and a single rate-limiting step. An immedi-
ate challenge for them arising from the findings of Karplus
and co-workers is to determine whether or not the folding
of real proteins has a unique transition state.” 

The challenge was taken up quickly by Fersht et al. [54]
in a paper comparing protein engineering experiments
with the lattice model results in [42] (see also the com-
ments in [34]). 

The ‘new view’ expressed by Baldwin represents a change
in the reference for protein folding studies from the random
search paradox of Levinthal to a search biased toward the
native state in an essential way by the variation of the effec-
tive energy of the polypeptide chain as a function of its
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Figure 3

Arrhenius plot of the folding reaction rate constant as a function of
temperature for the sequence used in Figure 1. Adapted from [48]. 
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conformation. In Figure 2 there is a monotomic energy
bias toward the native state, while in Figure 1 there is not.
However, in both limits there is a sufficient reduction in
the space that is sampled by the polypeptide chain to
make folding possible on a reasonable timescale; simple
arguments suggest that the folding time for a protein
whose effective energy surface is represented by Figure 2
would be on the order of a millisecond or less, while it
would be ~1 second for a protein corresponding to
Figure 1. This ‘new view’ is no different, in principle,
from the idea embodied in the harmony principle of Go
[21] and the minimum frustration principle of Bryngelson
and Wolynes [12,31], nor, as stated above, from elements
implicit in phenomenological folding models. 

The omission in the News & Views article by Baldwin of
references to the work of the many other people (e.g.
[12,21,26,33,55]) who contributed to developing the ‘new
view’ led to a personal, as well as a published, correspon-
dence [56,57] that appears to have contributed to the dis-
semination of the conclusions. Moreover, the impact of
lattice-based folding simulations has continued to grow
with a veritable deluge of papers published recently. They
have demonstrated the versatility of lattice simulations
and their ability to mimic a wide range of folding behavior
[19,32–34,43–46,55,58–60]. An important element in the
change in the perception of the protein folding problem
has been the felicitous introduction of the ‘folding funnel’
[60–62] as an idealized construct for the free energy
surface of the polypeptide chain. The funnel paradigm
[60,62] was based on calculations [43] with a 27-mer het-
eropolymer model that essentially reproduced the results
of Šali et al. (Figure 4 of [42]) with a somewhat different
choice of interactions; that two different models for the
interaction give very similar surfaces helps to establish the
generality of the original result. The ‘folding funnel’, as
first drawn in [60], represents the energy and entropy of
the polypeptide chain as a function of the progress vari-
able Q. (See also [19], which shows colorful illustrations of
idealized funnels in three dimensions without specifica-
tion of the nature of the reaction coordinates that are
involved.) In [60,62], there is a funnel-like narrowing as Q
increases that indicates a reduction of the configuration
space (decrease in entropy). Depending on the system
parameters, this could be a ‘trivial’ consequence of the
topology of the system (i.e. there are fewer states for larger
Q) or it could be the result of energy biases that lead to a
physically significant reduction in the number of states
accessible at a given temperature; an example of the latter
is the initial hydrophobic collapse that occurs in the
folding scenario shown in Figure 1. The other aspect of
the folding funnel is that there is a more-or-less mono-
tomic decrease in effective energy as Q increases; this cor-
responds to the surface in Figure 2a. A funnel that leads to
fast folding must have a decrease in the effective energy
as a function of Q that is sufficient to balance most of the

entropy decrease. In the lattice simulation shown in
Figure 2, there results a free energy with an entropic
barrier at high Q (Figure 2b). The lattice results have
been supported by model calculations [63–65] which
suggest that the expected timescale for folding on simple
funnel-like energy surfaces can be on the order of that
observed experimentally. 

Since the new view is based on general theoretical consid-
erations and on simplified generic lattice simulations, it
does not (cannot) provide information on the actual effec-
tive energy surface for a protein. Thus, the protein folding
problem has now gone full circle or, perhaps better, a full
turn of a spiral toward real understanding. We are much
more optimistic about being able to solve the folding
problem because the Levinthal paradox is no longer a
concern. However, we are now faced with the issue of how
the energy bias toward the native state is made to extend
over a sufficient portion of the configuration space to
make folding possible on the experimental timescale.
There is as yet no direct evidence (it will be very hard to
obtain it!) that the landscape paradigm embodied in a
simple funnel applies to any specific protein. Funnel-like
biased energy surfaces have been used to analyze experi-
mental data on the folding of several proteins [66,67], but
alternative interpretations of the results are generally pos-
sible. One recent example is the interesting study of a
series of Ala→Gly mutants of the l repressor, a small fast-
folding protein [68]. The paper points out that the results
are consistent with funnel landscapes, the diffusion-colli-
sion model [23], the framework model [25], and the
minimal kinetic description of a single transition state
barrier that is altered by the mutations. 

To know what is going on in real proteins requires an
understanding of the features of the potential energy
function and the aspects of the native and intermediate
structures of proteins that are involved in achieving the
required energy bias, on the one hand, and avoiding deep
traps, on the other. It is likely that certain of the phenom-
enological models will be resurrected in achieving this
understanding [68,69]. However, their use will now often
be phrased in terms of how they affect the energy land-
scape of the folding polypeptide chain [70]. Simulation
techniques based on realistic models of proteins with all-
atom potential functions and explicit or implicit solvent
models can aid in relating the ‘new view’ to real proteins.
Such simulations have already been used to probe certain
aspects of the unfolding dynamics [71–73] and the free
energy surface of a small three-helix bundle protein [74].
Improved simulations which are becoming feasible with
advances in computer technology, when combined with
the new wave of experiments that are providing more
detailed structural and kinetic information, can be
expected to solve the real protein folding problem (“Le
bon Dieu est dans le détail” [75]) in the next few years. 
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