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Abstract

We have developed the program TwinCons, to detect noisy signals of deep ancestry of pro-

teins or nucleic acids. As input, the program uses a composite alignment containing pre-

defined groups, and mathematically determines a ‘cost’ of transforming one group to the

other at each position of the alignment. The output distinguishes conserved, variable and

signature positions. A signature is conserved within groups but differs between groups. The

method automatically detects continuous characteristic stretches (segments) within align-

ments. TwinCons provides a convenient representation of conserved, variable and signa-

ture positions as a single score, enabling the structural mapping and visualization of these

characteristics. Structure is more conserved than sequence. TwinCons highlights alterna-

tive sequences of conserved structures. Using TwinCons, we detected highly similar seg-

ments between proteins from the translation and transcription systems. TwinCons detects

conserved residues within regions of high functional importance for the ribosomal RNA

(rRNA) and demonstrates that signatures are not confined to specific regions but are distrib-

uted across the rRNA structure. The ability to evaluate both nucleic acid and protein align-

ments allows TwinCons to be used in combined sequence and structural analysis of

signatures and conservation in rRNA and in ribosomal proteins (rProteins). TwinCons

detects a strong sequence conservation signal between bacterial and archaeal rProteins

related by circular permutation. This conserved sequence is structurally colocalized with

conserved rRNA, indicated by TwinCons scores of rRNA alignments of bacterial and

archaeal groups. This combined analysis revealed deep co-evolution of rRNA and rProtein

buried within the deepest branching points in the tree of life.
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Author summary

All species on Earth can be thought of as leaves on the Tree of Life, which are connected

by branches representing their ancestral relationships. Biopolymers are evolutionary

markers within species, that contain records of evolutionary history. Excavation of molec-

ular evolutionary histories involves collecting sequences from extant species and organiz-

ing them into multiple sequence alignments. For the purpose of comparison, the

sequences within an alignment can be partitioned into two groups, resulting in a compos-

ite alignment. We have developed the program TwinCons, to detect noisy signals of deep

ancestry. TwinCons distinguishes conserved, variable and signature positions between the

groups of the composite alignment. A signature is a position conserved within each group

but differing between groups. TwinCons can further be used to detect uninterrupted

ranges of positions (segments) preserved within the composite alignment. TwinCons

results can be mapped onto structures of molecules. TwinCons scores can be applied to

either proteins or ribonucleic acids (RNA). Using TwinCons we detected highly similar

segments across ancient and essential protein components of living cells (translation and

transcription) and pinpointed the deepest signatures between bacterial and archaeal

RNAs within the ribosome.

This is a PLOS Computational Biology Methods paper.

Introduction

Advances in sequencing and metagenomics [1] allow biologists to observe alterations in cancer

genomes [2], identify genetic novelty [3], characterize microbial communities [4], fold protein

sequences [5], and unravel ancestral relationships [6–8]. Sequence data are commonly ana-

lyzed and interpreted in the form of multiple sequence alignments in which rows are linear

sequences and columns are analyzed to quantitate conservation, which can indicate homology

and common ancestry [9].

Composite alignments

We wish to probe ancestral relationships within the translation and transcription systems,

which contain some of the oldest proteins and RNAs in the biological world. Can we look back

far beyond the Last Universal Common Ancestor (LUCA) [10] and establish whether seg-

ments of ribosomal proteins (rProteins) share ancestry with segments of RNA polymerase

(RNAP) or translation factors, and determine how these segments interplay with nearly RNA?

For that purpose, here we establish and apply a score of conservation within a composite align-

ment, which is a multiple sequence alignment containing two pre-defined sequence groups.

For example, in a composite alignment of a single gene, one group could be bacterial sequences

while the other could be archaeal sequences. Alternatively, a composite alignment might con-

tain paralogous sequences, where two different but related genes form the groups. One group

could be an initiation factor and the other group could be an elongation factor. In this sce-

nario, the homology within each group is known or suspected, but homology between the

groups is in question. The method developed here, called TwinCons, can be applied to either

protein or nucleic acid sequences. Classical methods consider only conserved and non-
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conserved alignment positions, while TwinCons differentiates between universal, signature,

and non-conserved segments or positions.

Phylogenetic signatures

Universal positions are conserved within and between groups. We define and detect signa-

ture positions as those that are conserved within groups but differ between groups. Signa-

ture positions have high mutational cost between groups as defined by substitution matrices

[11–13]. Protein signature positions that exhibit radical differences between groups have

been referred to as “functionally divergent” [14,15] or “constant-but-different” [16] or “sub-

family specific” [17,18] or positions that maximize functional similarity within groups and

functional variation between groups [19]. Such positions hint at differential mechanisms of

function between groups. Signature positions that exhibit differences in group-specific evo-

lutionary rates suggest residues that are critical for the function of one group but not the

other [20–22].

Search for ancient conservation

Classical methods for homology detection are based on alignments of a query sequence and a

database of annotated sequences, using sequence similarity scores or sequence profiles. Some

of the most widely used methods to detect homology employ local sequence similarity and

Hidden Markov Models [23–31]. These methods, together with annotated motif descriptor

databases are the basis of protein classification systems, and of function and structure predic-

tion algorithms [32]. These methods have become standards in annotating novel sequences,

and they infer ancestry of long conserved regions. Traditional methods rarely produce positive

results from deep and noisy ancestry that is locked in short segments of proteins with different

functions and structures. In these cases, researchers directly inspect conservation levels within

alignments to discover specific functional sites and homologies within a group of sequences

[33–37].

Alignments provide a variety of information such as relative rates of mutation. Substitution

models are obtained by determining which substitutions are common or rare in alignments of

homologous sequences [38–42]. Further sequestering alignments by different functions or

structure classes allows construction of substitution models of specific structural elements [43]

or among specialized types of proteins (e.g. membrane proteins [44], mitochondrial proteins

[45]). Henikoff & Henikoff [46] used distantly related sequences to calculate BLOSUM matri-

ces, which do not implement any evolutionary model, but are rather a direct observation on

substitution frequencies within alignment sequence blocks.

The neutral theory of molecular evolution [47] states that structurally and/or functionally

important sites within proteins experience stronger selection, with lower rates of change.

Therefore, high conservation has been widely used as an indicator for functionally important

sites within proteins [37,48–50]. Numerous studies have applied this theory by calculating evo-

lutionary rates from alignments based on specific positions [51,52], specific structures [43], or

global phylogenies [33]. Statistical methods have been developed to detect sequence divergen-

cies between duplicated genes [15,53,54] and have been used to discover functionally impor-

tant changes between proteins [55,56].

The TwinCons score

In the current work we describe TwinCons–which quantifies sequence conservation and sig-

nature positions in protein or nucleic acid composite alignments. TwinCons highlights univer-

sally conserved, variable, and signature positions in alignments of enzymatic and non-
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enzymatic proteins. TwinCons detects short segments that are common between proteins.

Such short segments are hypothesized to have recorded the deepest relationships between pro-

teins [57,58]. Using TwinCons ‘full capabilities allowed us to discover correlations between

highly similar rProtein segments and ribosomal RNA (rRNA) signatures in the most ancient

ribosomal components. The TwinCons method incorporates a composite alignment, with

groups for each polymer of interest. The method uses prior information on ancestry within

each group. Instead of calculating statistics of similarity, we mathematically determine a ‘cost’

of transforming an alignment column of one group to the corresponding alignment column of

the other group.

TwinCons offers advantages over previous methods. TwinCons identifies and discriminates

between universally conserved sites (large positive scores), intra-group signature sites (large

negative scores) and random sites (near zero scores). A positive TwinCons value corresponds

to conservation within each group in addition to conservation between the groups. A negative

TwinCons value represents conservation within groups and divergence between groups.

Finally, a TwinCons value near zero represents variability within and between groups.

Materials and methods

TwinCons calculation methodology

Summary. TwinCons computes and compares, for each position of a composite align-

ment, two 20-dimensional vectors of amino acid frequencies, one for each group. For nucleic

acid alignments the vectors are in 4-dimensions. TwinCons extends the formalism of a pair-

wise alignment to composite alignment between two groups (See Supplementary text in S1

Appendix for a detailed description). TwinCons computes the price of transformation of one

vector onto the other, filtered by a substitution matrix. The nature of the conservation is

defined by the substitution matrix, and can be based on empirical mutational frequencies, phy-

sico-chemical properties, etc. The scores computed over all columns within a composite align-

ment can be used to identify conserved regions, signature regions and random regions

between the two groups. Thus, the proposed score provides multiple utilities, and is useful for

comprehensive analysis of deep protein ancestry.

Selection of groups within the alignment. TwinCons is a metric that estimates the simi-

larity between two sequence groups for each position within a composite alignment consider-

ing global substitution frequencies inferred from a substitution matrix (Table A in S1

Appendix). Similarity is determined by the values of off diagonal elements in the substitution

matrix. For each alignment position two distributions of frequencies are calculated based on

the two groups: Group I and Group II that are defined prior to TwinCons calculations. Groups

can be manually defined in the input alignment or computed using the deepest branching

point of a phylogenetic tree, built from the input alignment.

Gap adjustment in the composite alignment. The TwinCons score performs gap adjust-

ment by prorating their frequency. Prorating can be done uniformly (for protein and nucleic

acid alignments) or by using the background frequency of a specified substitution matrix (only

for protein alignments, default option). With uniform prorating option, a single gap character

counts as 0.05 of every amino acid residue (for a protein alignment) or 0.25 of every nucleotide

(for nucleic acid alignments). With frequency prorating option, each gap contributes a skewed

frequency distribution from all 20 amino acids, provided from the substitution matrix. The

gap adjusted frequencies for each group are then computed for every column of the alignment

and used for the TwinCons calculations.
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Heavily gapped columns can be ignored by removing them from the calculation. The

default gap percentage threshold (GT) for a column to be removed is calculated as:

GT ¼ min
G1

G1þ G2
;

G2

G1þ G2

� �

� 0:05 ð1Þ

where G1 and G2 denote the number of sequences present in each group and min is a function

that takes the smaller result. This ensures that regions present only in one group are removed

and is most useful when mapping results on three-dimensional structures. Gapped regions in

an alignment can be omitted with the option “-cg”. The option “-gt” followed by percentage as

a decimal number (e.g., 0.9 = 90% gaps) can be used to override the default percentage for

removal of columns.

Vector frequency calculations. We represent the distributions of the gap adjusted fre-

quencies in each column of Groups I and II as n-dimensional vectors Xn and Yn. With “n” we

denote the number of possible residues (n = 4 in nucleotide alignments and n = 20 in amino-

acid alignments). Each value in the vector is the fractional occurrence for a given residue,

therefore the sum of values within one vector always equals one.

Frequency weighting. Each sequence within a group optionally can be weighted based on

its distance from the other sequences using either a Voronoi algorithm [59] or distance based

on branch length of a tree [60]. Thus, if an alignment contains many identical sequences, they

will be given less importance.

Substitution matrices in TwinCons. TwinCons supports a variety of substitution matri-

ces in log-odds form and is designed to work both with nucleotide and protein alignments.

For nucleotides we can select between a simple identity matrix, a transition/transversion

matrix and the blastn matrix (Table A in S1 Appendix). For amino acids we support a variety

of substitution matrices (Table A in S1 Appendix) [61]. Many of the available matrices are evo-

lutionary informed by mutational rates from global alignments (like Blosum62) and their off-

diagonal values confer information about signature substitutions. When provided with a struc-

ture file we use structurally informed substitution matrices that account for the partitioning of

sequence into secondary and 3D structure information (Table A in S1 Appendix) [43]. Custom

matrices in the PAML triangular format are also supported [62,63]. Throughout the manu-

script we use structurally informed LG-derived substitution matrices when a structure is avail-

able for both groups within a composite alignment. When structures are not available, we use

the LG matrix which does no structural partitioning.

TwinCons calculations. To calculate the cost of transforming one frequency vector in

another we take the transpose of one of the vectors and dot multiply both vectors by the scor-

ing matrix. Thus, for each alignment position TwinCons (TWC) is calculated as:

TWC ¼ Yn �M � X
T
n ð2Þ

where Xn
T is a column vector of frequency components for Group I, Yn, is a raw vector of fre-

quency components for Group II, and M is a transformation matrix (the cost of the transfor-

mation), which determines the mutation penalties between each pair of residues or

nucleotides. For a complete mathematical justification of the TwinCons calculation see Sup-

plementary text in S1 Appendix. The scoring matrices M are symmetric (equal to their trans-

pose), therefore TwinCons does not discriminate between departure and arrival points. In a

given composite alignment, TwinCons is computed for each position of the alignment.

Baseline correction. The range of TwinCons values depends on the matrix used. To have

an ability of comparing TwinCons scores computed using different matrices, we performed

baseline correction. Each matrix is adjusted by adding a value to each of its elements such that
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the TwinCons computed for a selected distribution is zero. The value is calculated either uni-

formly or, when available, using the background frequency of the substitution matrix (option

“-bn”). The default behavior is to use background frequency. In both cases the baseline correc-

tion aims to produce a matrix which evaluates to 0 when dot multiplied with the baselining

vectors. When using uniform baseline correction TwinCons is comparable to conservation

scores, except that it accounts for multiple groups. Classical conservation scores show maxi-

mum entropy, no information and zero conservation for completely random positions. When

using background frequency baseline correction TwinCons produces scores which are more

realistic for biological sequences.

Baseline correction follows naturally from the interpretation of TwinCons as a log-likeli-

hood score for paired sets of aligned residues, sampled from the leaves of a branching process

generated by the chosen substitution matrix. The baseline derived from the substitution matrix

is simply the expectation of TwinCons on a random sample, and thus the null hypothesis

under that generating model for samples grouped in the same way as the data. The derivation

of TwinCons as a statistic, including the baseline correction, and possible compositional

adjustments [64,65] is provided in the Supplementary text in S1 Appendix.

No additional normalization is performed to the maximal and minimal intensities across

different matrices. These values are a meaningful description of the evolutionary processes

present in the original datasets used to build the matrices. The TwinCons score tries to maxi-

mally preserve this information.

Example. For example, an alignment position has the nucleotide distribution ‘GAT-

TACA’ in one group and ‘AAAAAAA’ in the other group, this will produce a pair of 4-dimen-

sional vectors (Eq 3).

GCAT : ½0:14; 0:14; 0:44; 0:28� ðGATTACAÞ ð3Þ

GCAT : ½0; 0; 1; 0� ðAAAAAAAÞ

These vectors can be represented as points in a 4-dimensional space; to reach one point from

the other we must traverse the space between them. To represent the costs associated with tra-

versing that distance we use an n-by-n scoring matrix. In our example we use a 4-by-4 matrix

defined from the blastn algorithm and adjusted to produce score zero for uniform vectors.

TwinCons for our example vectors evaluates to 1.71 (Eq 4).

j0:14 0:14 0:44 0:28j �

6:75 � 2:25 � 2:25 � 2:25

� 2:25 6:75 � 2:25 � 2:25

� 2:25 � 2:25 6:75 � 2:25

� 2:25 � 2:25 � 2:25 6:75

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�

0

0

1

0

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

¼ 1:71 ð4Þ

Evaluating group similarity with TwinCons

To evaluate similarity between groups from a composite alignment we calculate segments

based on TwinCons scores. A segment is defined as a range of positions, within which the

cumulative TwinCons score is continuously increasing. To calculate a cumulative representa-

tion of the score we consecutively add the TwinCons score for each position. Next, the cumula-

tive score is smoothed using the Savitzky-Golay filter [66]. Segments are detected by

identifying local minima and maxima of the smoothed cumulative score. That way we generate

positive uninterrupted segments (Fig 1C). Each alignment generates a distribution of these
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segments with different lengths. The sum of scores for each position within a segment is con-

sidered as the weight of a segment. Thus, there are two variables describing each segment–

length and weight; they are normalized against the lengths and weights of the dataset used for

evaluation. Alignments that produce positive segments with greater lengths and weights have

groups of sequences that are more similar than groups from alignments that generate smaller

segments (Fig 1D). An alignment comprised entirely of random sequences will produce Twin-

Cons score around zero for all alignment positions when using uniform baseline correction,

and the cumulative score will have many troughs. All positive segments will have short lengths.

In contrast, an alignment comprised entirely of identical sequences will produce a continually

increasing cumulative score, without any troughs, resulting in a single positive uninterrupted

segment with length equal to the number of columns within the alignment. Therefore, groups

within alignments that produce larger positive segments have sequences that are more similar

and are more likely to share ancient ancestry. Detection of segments and calculation of

Fig 1. TwinCons results from composite alignments. (A) Example composite sequence alignment. Conserved positions within each group are shaded

blue for hydrophobic residues and red for charged residues; variable positions are not shaded. Consistent color spanning two groups represents

conservation. Change of colors between but not within groups represents signature. (B) TwinCons score for each position in the example composite

alignment. Conservation spanning groups produces large positive TwinCons scores (green, positions 1–3, 5). Conservation within but not between groups

produces negative scores (purple, position 4). Variability within and between groups produces scores near 0 (white, position 9). Columns with high

proportion of gaps produce score equal to 0 (position 10). (C) Cumulative TwinCons score calculated from positional scores. Local minima are indicated

with black squares and local maxima are indicated with black stars. Segments are defined as the alignment positions between adjacent local minima

(squares) and maxima (stars). Resulting segments are indicated with red arrows. (D) TwinCons results for segments from the BaliBASE multiple

alignments. Segments from alignments with related sequence groups are shown with white circles and segments from alignments with unrelated sequence

groups are shown with black circles. Each alignment produces multiple segments with normalized length and weight plotted on the 2D graph. One

alignment can produce multiple segments (white circles with red boundaries). Segment length and weight is normalized by the maximal length and

weight present in the dataset. Circle sizes indicate absolute segment lengths. The decision boundary calculated between segments from related sequence

groups (white circles) and segments from unrelated sequence groups (black circles) is shown with red line. Distance away from the decision boundary in

the range of -1 to +1 is shown with a diverging gradient and magenta dotted line. Cross validation statistics of true positive rate (TPR) and true negative

rate (TNR) for detecting correct assignments of the alignments for each decision boundary distance are on the right.

https://doi.org/10.1371/journal.pcbi.1009541.g001
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TwinCons scores can be automated. Below we provide a detailed description of the automation

process and the necessary parametrization procedure. Parametrization depends on a large

number of composite alignments and makes the inclusion of structure-informed matrices

intractable. We describe the rationale for the parameter choices we have made and possible

alternatives that have been studied during the parametrization.

Automated identification of protein segment similarities. To determine whether two

sequence groups are related we must define a boundary that separates short segments from

long segments. The discrimination is performed in Cartesian space of the segment lengths and

weights (Fig 1D). To calculate a separation boundary between segments generated from align-

ments with related and unrelated groups, we generated multiple composite alignment training

sets that include alignments from random sequences with INDElible [67] and from biological

sequences using rProteins, the BaliBASE database [68], and PROSITE [69,70]. Each set con-

tains true positive composite alignments (TP) with groups known to be ancestrally related and

true negative alignments (TN) with groups that do not share ancestry (Table 1). Some TN

composite alignments were filtered to ensure that they do not contain groups with shared

ancestry. Complete description of the four training datasets is available in the Supplementary

text in S1 Appendix.

Using the training datasets, we executed performance optimization and selection of various

TwinCons and segment delineation parameters. The parameters were evaluated to discern the

combination that best discriminates between TN and TP. Afterwards, we split the training

datasets to evaluate the best penalty parameter for training a classifier. The best performing

classifier was evaluated against the full datasets to calculate its precision and to define a signifi-

cance threshold away from the boundary that defines a segment with high similarity between

the groups of the composite alignment. The detailed steps of parametrization and training as

well as the selected options for each parameter are described below.

Training a decision boundary. TP and TN composite alignments were used as a training

set for classifiers based on support vector machines (SVM) [72], or forests of randomized deci-

sion trees [73]. An SVM can find an optimal decision boundary that separates the TP and TN

parts of a dataset. A random forest of decision trees gives a probabilistic result based on the

voting average of each tree. We compared classifiers from the SVM and random forest families

generated with the python sklearn library [74]. Each of the training datasets was used to gener-

ate a separate classifier which were validated against each other. Each segment was represented

by two variables–normalized segment length and total segment weight, additionally each seg-

ment’s importance was weighted by its total length. Every alignment produces segments that

are very small and short. The difference between alignments with related (TP) and unrelated

Table 1. Sources, numbers, and applied filtering of training datasets. Details for the source of each training dataset are given as reference to relevant publications. Num-

bers of TP and TN indicate the number of composite alignments used to train classifiers. Details on the composite alignment generation and filtering procedures for each

dataset are available in the Supplementary text in S1 Appendix. The INDELible program uses a control file which we provide as S8 Dataset. All composite alignments are

available at https://apollo2.chemistry.gatech.edu/TwinConsDatasets/.

Dataset Source TP composite

alignments

TN composite

alignments

TN Filtering

INDELible Simulator of biological evolution [67] 22 179 Removed 11 TN for which the random generation

performed poorly.

Ribosomal

proteins

Sparse and Efficient Representation of the

Extant Biology (SEREB)[71]

32 178 Combination of SSU rProteins for TN

BaliBASE BaliBASE multiple alignment suite

reference dataset 3 [68]

38 141 Removed TN, which contain alignment groups with similar

structural folds or functions (S1 Dataset).

PROSITE Protein patterns and profiles [69,70] 120 36856 Combinations based on motifs within the same

documentation entry.

https://doi.org/10.1371/journal.pcbi.1009541.t001
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(TN) groups is that alignments with related groups also produce larger and heavier segments.

Therefore, when training the decision boundary, we tried using all segments or filtering out

the bottom 50% of scoring segments. When filtering each alignment, we used only the largest

segments that cover 50% of the total normalized length and total absolute length of all align-

ment segments.

Parameterization of TwinCons segment calculation. Calculations of the TwinCons

scores and segments depend on multiple parameters: a) the substitution matrix used, b) the

baseline correction (uniform or background frequency), c) the weighing algorithm for

sequences, d) threshold for determining segment boundaries (the window size for smoothing

the cumulative score or the absolute intensity and length thresholds), e) percentage gaps to be

removed from the alignment before a calculation is done, f) filtering out low scoring segments,

g) treating signature positions as conserved positions, h) calculating a single average segment

position (central mass) from all segments of an alignment, and i) the classifier used.

To identify the combination of parameters that produces most robust differentiation

between segments from TP and TN composite alignments, we generated classifiers for seg-

ments generated with combinations of TwinCons parameters. Then we calculated a receiver

operating characteristic by testing the training sets against the other datasets (Fig A in S1

Appendix and S2 Dataset). Performance can be measured by calculating the percentage area

under curve (AUC) statistic.

Our results demonstrate that SVM classifiers consistently outperformed all types of random

forest-based classifiers in all combinations of training/testing datasets. SVM classifiers based

on the BaliBASE dataset produced best results, often above 95% AUC, against the other data-

sets. S2 Dataset holds detailed results for all tested parameter permutations.

The parameter combination for BaliBASE classifier that produced most robust differentia-

tion between all datasets was:

a) Substitution matrix: LG

b) Baseline correction with background frequency

c) No weighing of sequences

d) Cumulative segment delineation with smoothing window 9

e) Positions with more than 90% gaps were removed

f) Use the top 50% of segments

g) Do not treat signature positions as conserved

h) Do not calculate central mass of segments

i) Use SVM classifier.

After the selection of parameters of TwinCons and the type of classifier two additional

parameters related to the SVM calculation need to be defined. These are the regularization

(penalty) parameter and the gamma coefficient of the kernel function.

Penalty and gamma selection for the SVM classifier. Determining a decision boundary

by using SVM involves the parameters of penalty, kernel, and gamma function for the algo-

rithm. We used the default sklearn settings for kernel (rbf). To determine a penalty value, we

used a cross-validation methodology where we split a training dataset into 3 folds. This was

done by randomly assigning segments from each alignment to one of the three folds, each fold

was further split in a training and testing dataset. A classifier was built using the training por-

tion of the fold and tested against the testing portion with different penalty and gamma
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parameters. Receiver operating characteristics (ROC) curves were generated for different pen-

alty and gamma values for each fold. Using multiple folds of the training data allowed us to

determine standard deviations between runs for the ROC curves. Performance was measured

by calculating the AUC statistic. The gamma parameter did not significantly alter the perfor-

mance of classifiers based on BaliBASE or PROSITE datasets (Fig B in S1 Appendix). There-

fore, we use the automatic setting which sets gamma to 1 divided by the number of features. In

our case we have two features (segment length and weight), and gamma is 0.5. Different data-

sets produced different penalties as best performers (Fig B in S1 Appendix). Classifiers built

from the BaliBASE, and INDElible datasets showed best results with penalty of 20. Classifiers

built from the PROSITE dataset showed improved results with the two lowest tested values for

penalty. Classifiers built from the rProtein dataset did not show significant difference across all

tested penalty values. We selected to use the penalty of 20, since it gives best results for our

best-performing dataset (BaliBASE) (Fig B in S1 Appendix).

Choice for significance threshold. Using the calculated decision boundary to directly

determine whether a segment has strong similarity between the groups can generate false posi-

tives or negatives (Fig 1). We used the AUC performance statistics from the best parameter

combination and classifier dataset (BaliBASE) to determine a reasonable threshold away from

the decision boundary that lowers false positive results. This threshold is used throughout the

manuscript to determine significant segments. Each dataset was tested against the BaliBASE

classifier, by calculating TPR and TNR for distances away from the decision boundary from -5

to 5 with a 0.1 step. A distance of 0.7 from the decision boundary produced robust results

against the PROSITE (100% TNR, 42% TPR), the INDElible (68% TNR, 100% TPR), and the

rProtein (90% TNR, 100% TPR) datasets (S4 Dataset). Setting the significance threshold to a

more conservative value of 1.5 would ensure that even the INDElible dataset produces TNR

above 90% but would limit the TPR results to 35% in the PROSITE dataset (S4 Dataset). We

selected a significance threshold of 0.7 as it gives good results against all datasets from biologi-

cal sources.

Probability estimation. An SVM classifier is not intrinsically a probabilistic classifier,

however it can output a probability for the prediction it makes. We include this probability in

our outputs for user convenience. In our tests all segments with distance greater than 0.7 from

the decision boundary have a probability greater than 90%. Furthermore, we provide scripts to

generate calibrated SVM classifiers from our training data, which should behave analogous to

probabilistic classifiers.

Query alignments. Here we probe the ability of TwinCons to detect highly conserved

sequence motifs for 27 proteins or protein fragments from the translation and transcription

systems with known or suspected ancestry (Table D in S1 Appendix) based on structural simi-

larity or previous literature [75,76] (S5 Dataset). All translation proteins were retrieved from

the advanced visualization website ProteoVision [77]. Sequences for transcription systems

were retrieved from NCBI and are available at https://apollo2.chemistry.gatech.edu/

TwinConsDatasets/. Alignment of Tyrosyl and Tryptophanyl aminoacyl tRNA-synthetases

were retrieved from Fournier and Alm [78]. To compute TwinCons, we generated composite

alignments for each pair of candidates.

Querying an alignment against trained classifier. To detect significant segments within

a single alignment we calculate TwinCons and segments with the same parameters used for

the classifier. We calculate the distance from the decision boundary for each calculated align-

ment segment. If the distance is greater than 0.7 the segment is considered as a significant hit.

TwinCons reports the significant segments, their probability, their distance from the decision

boundary, and the alignment ranges they span in a csv format.
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Evaluating TwinCons performance against HHalign on training datasets. To evaluate

the performance of the TwinCons segment calculation we compared it to HHalign 3.0.3 [31].

HHalign can take as input a template alignment and a query alignment to produce a combined

alignment. All pairs of alignments in the rProteins, INDELible, BaliBASE, and PROSITE data-

sets were aligned with HHalign with default parameters, varying only the parameter that filters

input alignment columns by percentage of gaps. By default, HHalign generates an output

alignment that includes segments of local similarity between two input alignments. HHalign

also calculates scores for the output alignment including P-value, E-value, and probability of

homology of the locally aligned segment. We used the HHalign E-value as a threshold to gen-

erate ROC curves for a range of E-values starting from 0 and ending at 1 with a step of 0.001.

HHalign performed perfectly (100% AUC) in detecting homologous and non-homologous

groups in the rProtein and INDELible datasets (Fig C in S1 Appendix). HHalign performed

almost perfectly on average in detecting homology in the BaliBASE and PROSITE datasets

(97% and 92% AUC). The exclusion of columns by different percentage of gaps showed weak

influence on the results with removal of 10% showing the lowest AUC (Fig C in S1 Appendix).

While TwinCons was not designed to detect homologies, it is able to reach 90% AUC for the

BaliBASE (Fig B in S1 Appendix) and PROSITE (S2 and S4 Datasets) datasets and 100% for

the rProtein and INDELible datasets, performing nearly as well as HHalign (Fig C in S1

Appendix).

Results

TwinCons: Score that highlights conserved and signature regions

TwinCons detects highly conserved and signature sequences between two groups within a

composite alignment. Here, we demonstrate the utility of TwinCons using ribosomal protein

uL2. Archaeal uL2 sequences form one group in the alignment and bacterial uL2 sequences

form the other group. In addition, we analyze caspases and metacaspases, which are cysteine

proteases thought to share ancestry. For the caspase and metacaspase composite alignment,

caspases form the first group and metacaspases form the second group. We provide a detailed

comparison of TwinCons results with two previously described conservation metrics ConSurf

[33–35] and Zebra2 [17,18]. ConSurf can detect conservation within proteins and RNA across

an entire alignment column, while Zebra2 detects signature residues in a composite alignment.

We calculate protein conservation of the common composite alignments with TwinCons,

ConSurf and Zebra2 and compare their scores directly (S10 Dataset), we further map them on

3D structures (Figs 2 and 3, and D in S1 Appendix).

TwinCons detects highly conserved and signature positions in composite alignments.

TwinCons readily detects sequence conservation in ancient proteins. uL2 is thought to be one

of the oldest ribosomal proteins [81–83], and its high sequence conservation across phylogeny

has been documented [81]. High conservation is revealed within the globular region as well as

the extended loop of uL2 by both TwinCons and ConSurf (dark green, Fig 2). The results from

TwinCons are consistent with those from ConSurf for the sites that are highly conserved across

the entire alignment (Fig 2 and S10 Dataset).

In addition to detecting the conserved positions within a composite alignment, TwinCons

identifies signature sequences that are conserved within each group and are different between

the groups. In that way TwinCons highlights important evolutionary differences between

archaeal and bacterial sequences (Fig 2B). Such sites are indicated by negative TwinCons

scores. Thus, sites 41, 49, 150, 171, 199, 202, 206, 212, 248 in uL2 (E. coli numbering scheme)

have large negative TwinCons scores. These signature sites cover bacterial and archaeal struc-

tural regions that superimpose well (Fig 2). Since these residues are conserved within each
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branch of the TOL but have different identities between the branches, TwinCons can point to

sequence changes with evolutionary significance. By contrast, ConSurf indicates these sites are

moderately conserved (Fig 2, orange circles).

Fig 2. Comparison of ConSurf and TwinCons results by structural mapping. (A) ConSurf results from a composite sequence alignment for uL2 of

archaeal and bacterial sequences mapped on the E. coli uL2 structure from PDB ID 4V9D [79]. (B) TwinCons results for the same composite alignment. (C)

ConSurf results mapped on the P. furiosus uL2 structure from PDB ID 4V6U [80]. (D) TwinCons results mapped in the same way. White indicates positions

with highly variable sequences across the alignment. Purple indicates signature positions. Gray indicates heavily gapped regions. Orange circles highlight

regions of difference between TwinCons and ConSurf. The default coloring scheme of ConSurf was adjusted to a gradient from white to dark green to allow

correct comparison between ConSurf and TwinCons.

https://doi.org/10.1371/journal.pcbi.1009541.g002
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Fig 3. TwinCons is a convenient tool to study conservation and signatures. (A) Zebra2 conservation mapped on yeast metacaspase (PDB ID 4F6O

[86]). (B) Zebra2 conservation mapped onto human caspase-9 (PDB ID 1JXQ [85]). (C) TwinCons conservation mapped on yeast metacaspase. (D)
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TwinCons, like ConSurf, detects heavily gapped alignment positions. TwinCons can dis-

criminate between alignment positions that contain gaps only within one group and alignment

positions with gaps spanning the entire column. For example, the N-terminal β-hairpin of uL2

(1–37 E. coli numbering) is a feature present only in bacterial ribosomes and it should not

exhibit any TwinCons conservation, for that reason it lacks a score and is colored gray (Fig 2B).

TwinCons detects signature-rich regions. TwinCons can highlight alternative

sequences of conserved structures. TwinCons can identify structurally similar regions with

high frequency of signature columns within a composite alignment. For example, a short α-

helix, located between positions 196 and 206 of uL2 in E. coli, displays seven highly conserved

sites when calculating its evolutionary rate with ConSurf (Fig 2A and Table C in S1 Appendix).

In contrast, TwinCons reveals four signature sites for Bacteria and Archaea in the same region.

Three of these positions coincide with the conserved residues detected by ConSurf (Fig 2B and

Table C in S1 Appendix). Analysis of the sequence similarity within each (archaeal and bacte-

rial) group reveals that consensus sequences calculated for each group are distinct (Table C in

S1 Appendix). Yet, the 3D structures of archaeal and bacterial uL2 exhibit a common α-helical

element in this region (Fig E in S1 Appendix), therefore TwinCons can be used to detect alter-

native sequences for common structural elements.

TwinCons provides convenient representation of signatures and conservation. TwinCons

is robust and can probe evolutionary relationships between distantly related paralogs. Cysteine-

dependent aspartate-directed proteases called Caspases regulate apoptosis in metazoans. Similar

apoptotic proteases, called metacaspases, are found in plants, fungi, and unicellular organisms.

Caspase and metacaspase structures share α/β three-layered sandwich architecture character-

ized by a single centrally positioned parallel β-sheet and α-helices on both of its sides; their evo-

lutionary relationship predates the last eukaryotic common ancestor [84]. Here we demonstrate

the use of structurally informed substitution matrices in TwinCons to compare sequence simi-

larity of caspases and metacaspases. We cross check the TwinCons analysis with Zebra2 results

computed from the same alignment. We map these results on structures from a caspase (PDB

ID: 1JXQ [85]) and a metacaspase (PDB ID: 4F6O [86]) (Fig 3).

The two groups of proteases are evolutionary related [84] and structures representing

each group superimpose with an RMSD of 2.9 Å. TwinCons highlights four distinct types of

sites; i) universally conserved sites associated with the catalytic region; ii) moderately con-

served buried residues; iii) highly variable solvent exposed residues; iv) signature residues at

the periphery of secondary structural elements (Fig 3D–3F). Zebra2 detects all 4 types of

regions by using separate scores for conserved (Fig 3A–3C) and signature residues (Fig 3G–

3I). The two Zebra2 scores are not mutually exclusive. Zebra2 detects more signatures

within the alignment than TwinCons does, and just within the core β-sheet there are 10

Zebra2 signature sites (Fig 3H). TwinCons detects fewer signature residues in the entire

alignment and 8 within the core β-sheet (Fig 3E). The difference between the two scores

stems from low penalties for signatures in the structural matrices used by TwinCons. While

Zebra2 requires two separate mappings to visualize its scores (Fig 3A–3C and 3G–3I),

TwinCons produces a single score that detects highly conserved, variable and signature resi-

dues, which are mapped on the structure (Fig 3D–3F).

TwinCons conservation mapped onto human caspase 9. (E) Zebra2 signatures (subfamily specific) mapped on the metacaspase (F) Zebra2 signatures

(subfamily specific) mapped on caspase 9. Zebra2 conservations are shown with a gradient from yellow to gray, with yellow indicating highly conserved

and gray indicating non-conserved residues. Zebra2 signatures are shown with a gradient from cyan to red, with red indicating signatures. TwinCons

conservation is shown in white to green gradient (green is more conserved). TwinCons signatures are shown with a white to purple gradient (purple

indicates signatures). For TwinCons, white indicates non-conserved and gray indicates alignment positions that have sequences in only one group. The

inset shows the superimposition of the central β-sheets of each pair of proteins.

https://doi.org/10.1371/journal.pcbi.1009541.g003
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TwinCons: Score that detects sequence similarity between pairs of proteins

The simplicity and universality of TwinCons in analyzing local differences within protein com-

posite alignments were leveraged to detect highly similar regions for any two proteins. We

developed an automated parsing protocol aimed to detect continuous stretches of columns with

high TwinCons across the entire length of a composite alignment. We refer to such regions as

segments. A segment spans a range of alignment positions with a continuously increasing

cumulative TwinCons score after a smoothing with window size 9 (suggested by TwinCons

parameterization protocol) has been performed. We used a supervised learning model to pre-

dict whether a composite alignment contains regions with greater TwinCons scores compared

to those from composite alignments that include ancestrally unrelated groups. To explore the

ability of TwinCons to detect highly conserved sequence motifs, we applied this method to 27

proteins or protein fragments from the translation and transcription systems with known or

suspected ancestry (Table D in S1 Appendix and S5 Dataset) [75,76]. The results from 36 com-

posite alignments (some protein pairs have more than one alignment) are summarized in Fig 4.

Automated TwinCons analysis reveals similar segments in 10 pairs of proteins from 13

composite alignments. TwinCons detects highly similar segments between elongation factor

Tu (EF-Tu) and Initiation factors 2 (IF2) and 5 (aIF5 –archaeal variant of IF2), between rPro-

teins aL8, aL30, and eS12, between ribosomal protein bS1 and RNAP subunit 7, between rPro-

teins aL37 and bL34, between rProteins aL14 and eL27. TwinCons further detects more

marginal similarities between rProteins aL42 and bL33, between Tyrosyl and Tryptophanyl

aminoacyl tRNA-synthetases, and between rProteins uL2 and bL34 (Fig 4 and Table 2). We

describe TwinCons results in terms of number of segments, significance, and the total length

of the detected segments. Complete descriptions and 3D maps of the highly similar segments

are available in the Supplementary text and Table E in S1 Appendix. We further provide a

comparison of our results with HHalign [31,87], an established method for detecting homol-

ogy in protein sequences using hidden Markov’s algorithms.

Results between HHalign and TwinCons from the query set are largely similar (Table 2),

except for alignments that include multi-domain proteins (EFTu-aIF5 and bS1-aRNAP7), for

which TwinCons yields shorter ranges. TwinCons segments are generally more conservative

and fragmented than HHalign segments (Table 2; aL8-aL30, aL8-eS12, aL30-eS12). TwinCons

detects similarity between shorter segments more readily than HHalign (Table 2; bL34-aL37).

TwinCons detects at least a single segment for alignment pairs where HHalign has high confi-

dence results (S9 Dataset). To illustrate TwinCons detection of a possible similarity for a mar-

ginal case, we provide detailed description of the automated TwinCons results for a pair of

proteins related by a circular permutation.

Sequence similarity between the circularly permuted bL33 and aL42. TwinCons detects

a conservation signal within a β-hairpin when comparing rProteins bL33 and aL42. Previous

work demonstrated the structural relationship between rProteins bL33 and aL42 [88,89].

These proteins are colocalized in bacterial and archaeal ribosomes and have very similar struc-

tures, related by a circular permutation. Here we refer to them with their classical domain

names bL33 and aL42 [90] for clarity, however we and others have proposed that they should

share the name uL33 [88,91]. We probed whether TwinCons can detect the ancestral relation-

ship within the composite alignment of bL33 and aL42. To do that we aligned one composite

alignment with unpermuted sequences (bL33-aL42) and two composite alignments containing

either a permutation of bL33 (bL33CP-aL42) or of aL42 (bL33-aL42CP).

In both permuted composite alignments TwinCons detects a pair of segments with sequence

similarity between bL33 and aL42 (Fig 4 pink and Table 2 and S9 Dataset). One of these segments

is significant and it corresponds to the N-terminal β-hairpin of the aL42 structure (PDB ID: 4V6U
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[80]) and the C-terminal β-hairpin of the bL33 structure (PDB ID: 4V9D [79]) (Fig F in S1 Appen-

dix). These two β-hairpins superimpose well and are structurally similar (Fig F in S1 Appendix).

The second segment has a weaker TwinCons signal and corresponds to the C-terminal β-hairpin

of the aL42 structure and the N-terminal β-hairpin of the bL33 structure (S9 Dataset). HHalign

confirms the circular permutation over the entire range in both composite permuted alignments

(Table 2 and S9 Dataset). Thus, our results confirm a previous proposal on common ancestry of

these two proteins and suggest that they should be treated as a universal protein uL33 [88].

We also note that both TwinCons and HHalign detect a short region of marginal similarity

(Table 2) in a non-permuted alignment of bL33 and aL42 (Fig 4 violet and S9 Dataset). These

results appear to be low-scoring artifacts of a structurally inconsistent sequence alignment.

TwinCons results between archaeal and bacterial rRNA

TwinCons is a useful metric to study conservation and ancestry of nucleic acids. For example,

TwinCons can be applied to identify signature positions in rRNAs grouped into the three

Fig 4. TwinCons can detect noisy sequence similarity. Results from composite alignments of genes related by putative ancient duplication

events. Segments are represented with uniquely colored circles for each alignment. Circle sizes indicate segment length. The segment weight

and length are normalized relative to the training BaliBASE dataset. The decision boundary calculated from the BaliBASE dataset is shown

with a red line, distances from the boundary are shown with a diverging gradient (purple to green). The inset shows the number of segments

for each alignment at a significant distance from the decision boundary. Negative distance values indicate positions below the decision

boundary and positive values indicate positions above the boundary. Alignments with segments close to the decision boundary are at the

bottom of the legend and those further away are at the top. On the right, each distance from the decision boundary is associated with the

calculated false positive rate for the BaliBASE dataset. �Structure guided alignment.

https://doi.org/10.1371/journal.pcbi.1009541.g004
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major domains of life [11], provided that the transformation matrix in Eq 2 is adjusted for

nucleic acids. Previously, Woese et al. have detected signature positions within rRNA sequence

and structure [12,92]. Here, we used TwinCons computed for sequence alignments of bacterial

and archaeal rRNAs to identify ancient signature nucleotides.

We mapped the values of TwinCons onto a representative LSU 2D and 3D structures for

each group–E. coli for Bacteria (Fig 5) and P. furiosus for Archaea (Fig G in S1 Appendix)

[12,92]. We used TwinCons to identify conserved, variable and signature positions between

bacterial and archaeal rRNA sequences (Supplementary text in S1 Appendix). Regions of high

functional importance for the ribosome, such as the exit tunnel, the central protuberance, the

central pseudoknot (CPK), the peptidyl transferase center (PTC) and the sarcin-ricin loop, are

highly conserved and have high TwinCons scores (dark green regions in Figs 5 and G in S1

Appendix). Regions on the ribosomal surface, known to contain multiple long insertions with

highly variable sequences, are correctly detected as either highly variable (white regions in Figs

5 and G in S1 Appendix) or heavily gapped (gray regions in Figs 5 and G in S1 Appendix).

Signature sites detected by TwinCons are sparse and are distributed throughout the rRNA

structure. Surprisingly, signature sites are not confined to the variable ribosomal surface

regions (Fig 5C and 5D and G in S1 Appendix). Signatures are found both in conserved

regions of functional importance, like the central pseudoknot in the SSU (helices 1–3 and 28

in Fig 5A) and the PTC in the LSU (Helices 73 and 89–93 in Fig 5B), signature sites are also

found in variable regions like helix 33 (Fig 5A) and Helix 55 (Fig 5B). In total we detect 208 sig-

nature nucleotides in the SSU and 294 signatures in the LSU (S7 Dataset). Some signatures

occur at base-pairing nucleotides, revealing highly conserved base pairs within each group

which co-vary between the two groups (helix 30 in Fig 5A and Helix 69 in Fig 5B). By identify-

ing the signature positions in rRNAs, we uncover the deepest evolutionary changes in the

translational machinery that define the phylogenetic split at the last universal common

ancestor.

Table 2. Significant segments detected by TwinCons for protein composite alignments. Sequence ranges for segments detected as significant with TwinCons and in

parenthesis their respective distance from the decision boundary. Sum of all significant segment lengths for each alignment. HHalign E-value confidence results of aligning

the group sequences. Number of aligned columns with HHalign; for each pair, each protein was used as template and the higher result is reported here. Figures that show

detected segments in 3D are indicated under the alignment names. Indexing species for the indicated ranges and complete data for all query alignments are available in S9

Dataset.

Composite alignment TWC Segment residue ranges (Boundary dist.;

prob.)

Total length HHalign E-value HH Range HHalign aligned

columns

IF2/EF-Tu P-loop 10–35 (5.4; 100%)

95–145 (12.8; 100%)

75 2.8e-29 16–181 140

aIF5/EF-Tu (Fig J in S1 Appendix) 8–32 (4.7; 100%)

95–141 (11.1; 100%)

70 3.6e-22 15–274 237

aL8/eS12 30–93 (10; 100%) 63 5.1e-18 22–137 115

RNAP7C/bS1 (Fig K in S1 Appendix) 83–120 (8.2; 100%) 37 3.6e-15 114–203 72

aL8-aL30 22–66 (6.8; 100%) 44 4.2e-15 32–124 91

aL37-bL34 (Fig L in S1 Appendix) 1–26 (5.7; 100%) 25 0.39 51–51 1

aL30-eS12 3–43 (4.1; 100%) 40 7e-8 20–114 92

aL14-eL27 4–30 (4.7; 100%) 26 6.5e-9 3–66 64

RNAP7C/bS1 Struct. based 83–114 (2.1; 99%) 31 1.2e-18 120–286 136

aL42/bL33CP 4–26 (1.3; 95%) 22 3.1e-8 76–154 68

aL42/bL33 3–31 (1.2; 93%) 28 5.8e-5 101–122 20

TyrRS/TrpRS 38–63 (0.9; 89%) 25 3.5e-28 118–287 151

uL2/bL34 13–39 (0.81; 87%) 26 0.064 77–107 30

https://doi.org/10.1371/journal.pcbi.1009541.t002
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Fig 5. TwinCons between archaeal and bacterial rRNA sequences, mapped on 2D and 3D representation of the E. coli ribosomal structure. (A)

Secondary structure of the E. coli 16S rRNA. (B) secondary structure of the E. coli 5S and 23S rRNAs. (C) Surface representation of the three-

dimensional structure of the 16S rRNA of the E. coli ribosome. D) Surface representation of the three-dimensional structure of the 5S and 23S rRNAs

of the E. coli ribosome. The 3D structures are viewed into the subunit interface. Gray indicates heavily gapped regions, indicating elements that are

present in either bacterial or archaeal rRNAs; dark green indicates highly conserved regions within both bacterial and archaeal sequences; dark
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TwinCons can identify colocalized patterns in rRNA and rProteins. To extend our

analysis beyond signals obtained from individual sequences we performed a combined

sequence and structural analysis of rRNA and rProteins. This analysis reveals colocalized

changes suggesting coevolution of the two types of ribosomal biopolymers. Previously Roberts

and co-authors correlated the structural signatures between rProteins and rRNA, however

they did not identify rProtein sequence signatures or correlate them to rRNA sequence signa-

tures [92]. rProtein uL33 (bL33 or aL42) is located near the E-site of the LSU. Using TwinCons

we detected a sequence segment that is highly conserved between Bacteria and Archaea (cyan

cartoon Figs 6 and F in S1 Appendix and Table 2). This segment interacts with highly con-

served rRNA Helices 82 and 86 (E. coli numbering), part of the central protuberance (Fig 6).

The other β-hairpin of uL33, which has low sequence similarity between bacteria and archaea,

interacts with multiple rRNA signature sites in Helices 81 and 88 (gray cartoon Figs 6 and 5).

The α-helical insertion present only in archaeal uL33, also interacts with rRNA Helices 81 and

88 (E. coli numbering) (gray cartoon Fig 6). These results indicate correlation between changes

in rProtein and rRNA in the most ancient ribosomal regions.

Discussion

Multiple sequence alignments can provide us with archives of molecular history [95]. These

archives are imperfect records of past events; with lost sentences, paragraphs, pages and chap-

ters. These imperfections reflect a complex history of evolution, during which simple point

mutations accumulate together with more complex processes of large insertions, deletions,

duplications, and permutations. Molecular history has been tracked successfully using protein

domains [75,96,97], motifs [57,98,99], and short segments of proteins [58,100]. Comparing

two alignment groups within a composite alignment of two genes that are possibly related, and

combining sequence and structural analysis, can help unveil the origins and deep history of

ancestral genes, pushing the boundaries of what we can learn about the distant molecular past.

In general, from a composite alignment, multiple types of patterns can be recovered, revealing

distinctive aspects of molecular history. Important patterns include:

• Highly conserved sequence regions across groups highlight critical elements responsible for

structural and functional identity of a particular gene.

• Highly variable regions across groups, represent an archive of recent evolutionary history

and are essential for fine-grained phylogenetic reconstructions.

• Regions that are conserved within alignment groups but differ between groups (signatures),

highlight functional diversification between groups.

Using pre-generated composite alignments, TwinCons detects conserved, variable and sig-

nature positions between alignment groups in a single step. TwinCons can be mapped onto

three dimensional structures and employs a wide variety of sequence- and structure-informed

substitution matrices, as well as sequence weighing based on global similarity measures. Auto-

mated visualization of TwinCons has been implemented in ProteoVision [77], an online web-

server that enables simultaneous structural visualization and custom data mapping at levels of

primary, secondary, and three-dimensional structure of proteins. TwinCons displays signa-

tures and conservation in a single convenient layout and highlights alternative sequences of

purple indicates signature regions between bacterial and archaeal sequences; white indicates sequence variable regions. Helical numbers are blue and

domain numbers are brown. 2D representations were generated with RiboVision [93], and 3D representations were generated with PyMOL [94].

PDB ID used for 3D representations is 4V9D [79].

https://doi.org/10.1371/journal.pcbi.1009541.g005
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conserved structures. TwinCons identifies structural locations of signatures and conserved res-

idues associated with catalytic regions of distantly related enzymes. Furthermore, TwinCons

finds similar segments within composite alignments. TwinCons is generalizable for both pro-

tein and nucleotide alignments, facilitating joint analysis between RNA and proteins in com-

plex RNA-protein assemblies such as the ribosome, unveiling ancient molecular history.

TwinCons highlights structurally important sites in enzymes

Evolutionary related caspases and metacaspases [84] were analyzed here by TwinCons,

highlighting four categories of information: i) universal conservation, ii) moderate conserva-

tion, iii) high variability, and iv) signatures (Fig 3D–3F). These TwinCons results are consis-

tent with caspase and metacaspase structures.

i. Universally conserved sites of caspases and metacaspases are associated with catalytic

regions, signifying conserved catalytic mechanisms.

ii. Moderately conserved sites are found at buried residues, implicating residues that preserve

the structural core.

iii. Highly variable sites are found at solvent exposed residues, which do not influence the

structure or function of the enzyme.

Fig 6. Correlation between signatures and conservation in archaeal and bacterial rRNA and rProteins detected with TwinCons. (A) Archaea (rProtein aL42

in P. furiosus ribosome). (B) Bacteria (rProtein bL33 in E. coli ribosome). rRNA helices are labeled with capital H and canonical numbering. rProteins bL33 and

aL42 are shown with cartoon with the highly conserved segment colored in cyan and the rest of the protein colored in gray. This figure was generated with PyMOL

[94]. The PDB ID used for panel (A) is 4V6U [80] and for panel (B) is 4V9D [79].

https://doi.org/10.1371/journal.pcbi.1009541.g006
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iv. Signature sites are often observed at the periphery of secondary structural elements, signi-

fying differences in caspase and metacaspase mechanisms of association between second-

ary structural elements and the structural core.

The comparison of caspases and metacaspases illustrates how TwinCons can quickly high-

light conserved, variable, and signature sites with a single score. In that way TwinCons is a use-

ful tool for comparative evolutionary studies between related groups of proteins.

TwinCons compared to alternative scores

Conservation within sequence alignments is a cornerstone of evolutionary analysis. A wide

variety of full column conservation scores have been developed [34,36,52,101]. These con-

servation scores treat an alignment as a single object (without partitioning into groups)

and thus, they cannot discriminate between signature and conserved regions, as exempli-

fied by comparison with ConSurf (Fig 2). One of the first forays in identifying functional

protein residues likens the entire protein sequence to a vector [102]. TwinCons also utilizes

such notation, when frequencies of residues or nucleotides in each group are represented

as vectors and transformed by a substitution matrix. Thus, the calculation of our score is

analogous to computation of the energy of a dipole vector in an external anisotropic elec-

tric field, defined by an anisotropic tensor. Several statistical methods focus on identifying

functionally important regions within a composite alignment [103,104]; these methods

lack the ability to incorporate structural data and are protein specific. Toolkits like

Diverge3 [54] and Zebra2 [18] that incorporate structural data and map scores on struc-

tures have also been developed [105,106]. By contrast, TwinCons provides a single metric

that specifies between-group conservation. TwinCons improves on existing signature-

identifying methods by providing greater accessibility and flexibility in usage, in calcula-

tion methods, in visualization capabilities, and in simultaneous application for RNA and

protein. Below, we briefly compare TwinCons with the scores mentioned above and high-

light the strengths of each method.

Comparison of TwinCons with DIVERGE3. Diverge3 reveals site-specific divergences

(signatures) within a protein family for a supplied alignment and sequence groups.

Diverge3 evaluates a Bayesian profile for each group and measures how amino acid residues

contribute to signatures. Diverge3 can map its divergence score onto a 3D structure. The

divergence statistics employed by Diverge3 are based on analysis of evolutionary rates

inferred from a given alignment. Diverge3 is not intended to detect conserved and highly

variable regions. Unlike Diverge3, TwinCons uses statistics built into substitution matrices

(see below) and provides instantaneous computations of the scores for every position within

a composite alignment.

Comparison of TwinCons signature positions with Zebra2. Zebra2 automatically par-

titions an alignment into multiple pairs of groups and assigns significance values for every

grouping. For every detected group, it calculates two separate metrics for conservation and

signatures. Zebra2 provides 3D structural mappings, and a sequence similarity network

representation of the results [17,18]. TwinCons uses either pre-defined or automated phy-

logeny-based partitioning of an alignment to define its groups; it computes a single score

that distinguishes between conserved, variable and signature regions. The single TwinCons

score facilitates visualization and identification of each of these regions and does not

require mapping data multiple times, which would be necessary for Zebra2 (Fig 3). The

results for signature regions obtained by Zebra2 and TwinCons are consistent, if Twin-

Cons is computed using structure-informed substitution matrices (Figs 3 and H in S1

Appendix) [43].
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TwinCons requires a pre-computed composite alignment

TwinCons is an evolutionary metric computed for each position within the composite align-

ment. It does not optimize or otherwise alter the input alignment. Thus, TwinCons results are

highly dependent on the alignment and the initial determination of sequence groups within

that alignment. TwinCons will produce a result for any supplied composite alignment, manu-

ally curated or automatic. A given set of sequences, organized in different groups or in differ-

ent alignments, can produce differing TwinCons scores. Thus, supplied composite alignments

and the groupings within them should be carefully checked in advance for sufficient quality.

TwinCons detects short highly similar segments. HHalign from the HH-suite [31] can

compute an optimal pairwise alignment between HMM profiles generated from two align-

ments [30,87]. In that way HHalign can produce predictions about protein homology and can

identify highly similar regions between two alignments or profiles. TwinCons measures the

conservation between two pre-defined groups within an already constructed composite align-

ment and can identify segments that have higher levels of similarity than observed in datasets

of unrelated alignments. The two methods are different, yet their results, from our query set,

are largely similar (Table 2). While the overall ranges of TwinCons segments are more conser-

vative and more fragmented than HHalign ranges, TwinCons detects similarity between short

segments, which HHalign does not. Thus, TwinCons is more useful for identification of short

motifs. This difference is likely the result of the segment delineation rule, used by TwinCons.

In future releases of TwinCons we plan to improve on this rule using a probabilistic method

that accounts for global similarities.

TwinCons detects shared segments within the universal core of life

Reuse of small protein segments is ubiquitous in protein evolution. Opportunistic reuse has

been observed so often as to raise questions about the primacy of the protein domain as the

“atomic unit” of evolution [57,58,98]. The translation and transcription systems contribute to

most of the universal gene set of life [71,107,108]. TwinCons identified segments of peptides

with high similarity between 9 pairs of proteins from 12 composite alignments, spanning the

translational and transcriptional systems (Figs 5 and F, J-L in S1 Appendix). TwinCons can be

used on any composite alignment and can identify similar segments between structurally simi-

lar or different proteins.

Significance of rRNA and rProtein colocalized signatures for the deepest

branching events in phylogenetic trees

TwinCons identifies signatures that determine the deepest and most ancient branching events

in the tree of life (TOL). The ribosome is the ultimate molecular fossil, holding records of pro-

tein and RNA co-evolution [109–112]. Ribosomal RNA was the ‘gold standard’ for phyloge-

netic analysis for many years [113]. In the rRNA derived ‘Woesian’ tree Bacteria, Archaea, and

Eukarya represent three major independent branches [11]. Recently, concatenated rProtein

sequences have been used for determining and characterizing the TOL [8,114–117], suggesting

that Eukarya may have branched from within the Asgard archaeal superphylum. Thus, phylo-

genetic trees built from rRNA and rProteins show substantially different topologies [8]. The

deepest branches in the TOL are determined by signature positions in rRNA [92] and likely in

rProteins.

TwinCons provides the toolkit to identify sequence signatures in both rRNA and rProteins.

This analysis can be further substantiated if coupled with information derived from the 3D

structure. Specifically, we identify the structural clusters, in which signatures in both rRNA
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and rProteins (the deepest evolutionary signals) are colocalized as in the case of uL33 and its

RNA binding site. Furthermore, it is possible to identify the asymmetric regions, in which the

evolutionary changes in one polymer are not compensated by adjustments in the surrounding

counterpart. We hope that the identification of such polarized regions combined with the

structural and compositional analysis of the ribosomes will provide clues for evolutionary pro-

cesses that resulted in divergence of archaeal and bacterial translation systems.

Conclusion

TwinCons is a single metric that highlights conserved, variable, and diverging (signature) sin-

gle column positions between a given pair of sequence groups within an alignment of protein

or RNA. The TwinCons score can be used to query deep ancestry of short peptides from full

protein alignments. Coupling TwinCons with supervised machine learning techniques pro-

vides a robust method for probing ancestry between any pair of possible protein candidates.

TwinCons improves on existing signature-identifying methods by providing greater accessibil-

ity and flexibility in usage, in calculation methods, in visualization capabilities, and in simulta-

neous application for RNA and protein. TwinCons analysis coupled with information inferred

from 3D structures can be a useful tool in studying colocalized changes in RNA and protein

assemblies like the ribosome and uncovering mechanisms of sequence change and conserva-

tion hidden in ancient molecular history.

Supporting information

S1 Appendix. Supplementary text, figures, and tables. Fig A. ROC curves for classifiers with

different parameters built from the BaliBASE dataset, tested against the rProt dataset. Parame-

ters shown here are segment boundaries (length threshold), TWC intensity for detection of

positive positions (intensity threshold), and what percentage gaps should be used for removal

of alignment columns (gap threshold). Each subplot represents different combination of the

intensity and length thresholds. Colored lines within subplots represent different gap thresh-

olds. Cutting only alignment positions with more than 80–90% gaps produce better distinction

between true positive and true negatives. Complete data including all tested parameters and

datasets is available in S2 Dataset. Fig B. ROC curves of training classifiers with different pen-

alties and gamma parameters. The first four subplots (A-D) test different penalties and the last

four test different gamma values (E-H). Each subplot represents a different dataset that was

used for training and testing. (A) and (E) are PROSITE, (B) and (F) are BaliBASE, (C) and (G)

are INDELible, (D) and (H) are rProtein dataset. For testing each dataset was split in 3 folds.

Each fold produces an ROC curve, we plot the mean of the three results as single curve and

plot the standard deviation of the true positive rate as a shaded region around it. Complete

data is available in S3 Dataset. Fig C. ROC curves generated from HHalign alignments from

the four datasets: BaliBASE, rProtein, INDELible, and PROSITE. Colored lines within subplots

represent different gap thresholds used for column exclusion. Fig D. Comparison of structural

mapping between Zebra2 and TwinCons. A) Zebra2 results and B) TwinCons results from

sequence alignment for uL2 between archaeal and bacterial sequences mapped on the E. coli

uL2 structure from PDB 4V9D [22]. C) Zebra2 results and D) TwinCons results from the same

sequence alignment mapped on the P. furiosus uL2 structure from PDB 4V6U [36]. In panels

A) and C) red indicates signatures. In panels B) and D) dark green indicates alignment posi-

tions with high conservation of residues, purple indicates signature positions, gray indicates

heavily gapped regions in the composite alignment. Orange circles indicate signature posi-

tions. Fig E. TwinCons mapped for a short α-helix region in uL2 with analogous sequence

between Bacteria and Archaea. Residues depicted here are listed in Table C in S1 Appendix.
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(A) stick representation for E. coli uL2. (B) stick representation for P. furiosus uL2. (C) cartoon

representation of E. coli uL2. (D) cartoon representation of P. furiosus uL2. (E) and (F) show

different angle for the E. coli and P. furiosus uL2. Conserved residues are colored green, signa-

tures are colored purple, and random positions are white. Heavily gapped regions, present in a

single group, are colored gray. Figure generated with PyMOL. PDB IDs and chains used for

the figure are available in Table E in S1 Appendix. Fig F. TwinCons segment with significant

sequence similarity between (A, B) bL33 and (C, D) aL42. The segment is shown with full

opacity cartoon, non-segment regions are shown with transparent cartoon. Conserved resi-

dues are colored green, signatures are colored purple, and random positions are white. Heavily

gapped regions, present in a single group, are colored gray. Segment definitions are available

in S6 Dataset. Figure generated with PyMOL. PDB IDs and chains used for the figure are avail-

able in Table E in S1 Appendix. Fig G. TwinCons score for Archaea and Bacteria composite

alignments of the small and large subunits. (A) Secondary structure of the P. furiosus 16S

rRNA with mapped TwinCons. (B) Secondary structure of the P. furiosus 5S and 23S rRNAs

with mapped TwinCons. (C) Surface representation of the 16S rRNA for P. furiosus ribosome.

(D) Surface representation of the 5S and 23S rRNAs for P. furiosus ribosome in crown view.

Both the small and large subunits are shown from the subunit interface direction. Gray indi-

cates heavily gapped regions, present only in bacterial or archaeal sequences; dark green indi-

cates highly conserved regions between both bacterial and archaeal sequences; dark purple

indicates signature regions between bacterial and archaeal sequences; white indicates sequence

variable regions. In panels (A) and (B) blue numbers indicate helical numbering and ribo-

somal domains are indicated with brown. Panels (A) and (B) are generated with RiboVision,

panels (C) and (D) are generated with PyMOL. PDB IDs and chains used for the figure are

available in Table E in S1 Appendix. Fig H. TwinCons signatures differ based on the substitu-

tion matrix used. TwinCons results mapped on (A) metacaspase, (C) caspase, and (B) β-sheet

superimposition of both structures, using the Blosum62 matrix. TwinCons results mapped on

(D) metacaspase, (F) caspase, and (E) β-sheet superimposition of both structures, using struc-

ture-informed substitution matrices. A position with differing result is highlighted between

panels (B) and (D) with red. Set of residues, representing the composite alignment column for

the highlighted position, are shown between (B) and (E). Structure-informed matrices produce

stronger signature signal between the two groups for this alignment position. Structures are

generated with PyMOL. PDB IDs and chains used for the figure are available in Table E in S1

Appendix. Fig I. Distribution of TwinCons scores from the E. coli rRNA, based on three com-

posite alignments between Archaeal and Bacterial sequences of 23S, 16S, and 5S rRNA. (A)

Histogram of TwinCons scores showing three peaks of distribution around the minimum

score, score zero, and the maximum score. (B) Scatter plot of TwinCons scores with group

assignment by k-means clustering algorithm. The y-axis holds randomly assigned values and

is only illustrative. Scores from different groups are colored with the viridis gradient. The red

and green lines indicate the calculated thresholds of the groups spanning the lowest (red) and

highest (green) scores. Thresholds calculated from each composite alignment are available in

Table B in S1 Appendix. Fig J. TwinCons segments with significant sequence similarity

between the P-loop domains of (A, C) aIF5 and (B, D) EF-Tu. Segments are shown with full

opacity cartoon, while non-segment regions are shown with transparent cartoon. GDP from

the EF-Tu structure is shown with sticks. Conserved residues are colored green, signatures are

colored purple, and random positions are white. Heavily gapped regions, present in a single

group, are colored gray. Segment definitions are available in S6 Dataset. Figure generated with

PyMOL. PDB IDs and chains used for the figure are available in Table E in S1 Appendix. Fig

K. TwinCons segment with significant sequence similarity between bS1 and domain 7 of

RNAP mapped on the RNAP7 structure. (A) and (B) two views of the segment mapped on the
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RNAP7 structure. Segment is shown with full opacity cartoon, while non-segment regions are

shown with transparent cartoon. Conserved residues are colored green, signatures are colored

purple, and random positions are white. Heavily gapped regions, present in a single group, are

colored gray. Segment definitions are available in S6 Dataset. Figure generated with PyMOL.

PDB IDs and chains used for the figure are available in Table E in S1 Appendix. Fig L. Twin-

Cons segment with significant sequence similarity between bL34 and aL37. (A) representation

of E. coli bL34, (B) representation of P. furiosus aL37, (C) 90-degree rotation view of E. coli

bL34, and (D) 90-degree rotation view of P. furiosus aL37. The segment is shown with full opac-

ity cartoon, non-segment regions are shown with transparent cartoon. Conserved residues are

colored green, signatures are colored purple, and random positions are white. Heavily gapped

regions, present in a single group, are colored gray. Segment definitions are available in S6 Data-

set. Figure generated with PyMOL. PDB IDs and chains used for the figure are available in

Table E in S1 Appendix. Table A. Substitution matrices available for TwinCons calculation and

references for full descriptions. Table B. TwinCons thresholds calculated with 5 k-clusters for

different subsets of rRNA. First two rows, tagged with ‘ribosome’, include sequences from the

23S, 5S, and 16S. Entries tagged with LSU include sequences from the 23S and 5S. Entries

tagged with SSU include only rRNA from the 16S rRNA. TwinCons was calculated against the

Archaea-Bacteria composite alignment of the rRNA. Standard deviations were calculated after

repeating the calculation 100 times. Full script used to generate this data can be found at https://

github.com/LDWLab/TWC_distribution. Table C. TwinCons and ConSurf statistics for α-heli-

cal region in uL2. Positions with low Shannon entropy, low ConSurf score, and high TwinCons

score are detected as highly conserved. Positions with TwinCons below -0.6 are detected as sig-

nature positions. Signature positions detected with TwinCons, that are detected as conserved by

ConSurf are highlighted with blue. Table D. Composite alignments used in sequence similarity

analysis. Table E. Protein and rRNA structures used to map sequence similarity analysis. When

multiple PDBs are used in a single row they are separated by a semicolon. When multiple chains

are used from a single PDB they are separated by &.

(PDF)

S1 Dataset. Table with BaliBASE alignment names with enzyme and EC annotations pres-

ent in the alignment. Alignments with similar EC annotations are colored the same. Combi-

nations between alignments that share color are excluded from dataset generation.

(XLSX)

S2 Dataset. Figures with ROC curves for all tested parameters. The title of each figure indi-

cates the training dataset and the tested dataset. For example, “BBS vs PROSITE” indicates that

the training set was BaliBASE and it was tested against the PROSITE dataset. ROC labels of

subplots and lines are the same as the ones used in Fig A in S1 Appendix.

(PDF)

S3 Dataset. Data used to generate Fig B in S1 Appendix. The title of each sheet indicates

whether penalties or gamma values were tested. TPR, FPR, and TPR standard deviation for

each of the datasets. Calculations were done for boundary distance thresholds varying from

-20 to 20 with a step of 0.05.

(XLSX)

S4 Dataset. Performance of trained classifier from the BaliBASE dataset with best parame-

ter combination against itself and the three other datasets. TPR, TNR, and precision for

boundary distance thresholds varying from -5 to 5 with a step of 0.1. The distance thresholds

of 0.7 and 1.5 are highlighted.

(XLSX)
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S5 Dataset. Description of query composite alignments used in Fig 4. Alignments are avail-

able at https://apollo2.chemistry.gatech.edu/TwinConsDatasets/.

(XLSX)

S6 Dataset. TwinCons segment results for composite alignments used in Fig 4. Each seg-

ment is identified with its alignment position and the distance it was from the decision boundary.

(CSV)

S7 Dataset. TwinCons results from rRNA composite alignment of 23S, 16S, and 5S

sequences between Archaea and Bacteria. TwinCons results from protein composite align-

ments of caspase-metacaspase and uL2. Thresholds for signature and conserved positions for

each alignment are indicated.

(XLSX)

S8 Dataset. INDELible control file used to generate artificial sequence alignments from

random sequence seeds, evolved under biological model.

(TXT)

S9 Dataset. Combined TwinCons and HHalign results for segments detected within the

query alignment set. The file reports alignment group names, TwinCons scores and probabil-

ity, TwinCons segment ranges, HHalign scores and probabilities, HHalign ranges, and index

sequences used for the ranges.

(XLSX)

S10 Dataset. Direct score comparison for the alignment of uL2 between TwinCons and

Zebra2, as well as TwinCons and ConSurf.

(XLSX)
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