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DNA structure: cations in charge?

Lori McFail-lsom, Chad C Sines and Loren Dean Williams*

Recent X-ray diffraction, NMR spectroscopy and molecular
mechanics results suggest that monovalent cations selectively
partition into the minor groove of AT-tracts in DNA. These
observations are consistent with DNA deformation by
electrostatic collapse around areas of uneven cation density. This
model predicts the occurrence of known DNA deformations, such
as AT-tract bending and changes in the minor-groove width.
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Introduction

Few would argue against the importance of electrostatic
interactions in DNA bending, twisting, groove-width vari-
ation, deformation and condensation, and in RNA folding
and catalysis. A central role for electrostatics in bending
mechanisms is indicated by the effects of salt on the bend-
ing of Alxtraces [1-3] and GC-tracts [4-6]. Yet, the analysis
of high-resolution DNA strucrures, originating with
‘Calladine’s rules”™ [7], has focused primarily on direct
base~base interactions, implicitly discounting contribu-
tions from electrostatics. 'The limitations on electrostatic
analysis are partially technical; one simply cannot obtain
much informacion about shielding, counterion positions or
clectrostatic forces. These limitations provide a partial
explanation for the durability of the base~base paradigm
[8°], in spite of its obvious dcficiencies. Some current dif-
ficulties in the treatment of electrostatic interactions in
nucleic acids have been discussed by Feig and Petritt [9].
Here, we review recent proposals of unanticipated roles for
cations in the control and perturbation of B-DNA struc-
tures. Space limitations prohibit the review of exciting new
developments in the realm of the cation control of quadru-
plex structure (for example, sce [10]).

Lost cations

A full complement of neutralizing cations is contained
within every nucleic acid crystal; net charge would
explode a crystal. Yet, historically, the cations that neutral-
ize the anionic phosphates of nucleic acids, especially
alkali monovalent cations, have been omitted from three-
dimensional  structures. The seminal ‘Dickerson
dodecamer’ (CGCGAATTCGCG, 2.5 A resolution,
Nucleice Acid Database [NDB| entry DBLO01 [11]), with
22 anionic groups, lacks any cationic counterions. Even at

very high resolution (1.4 A), Williams and co-workers
[12°%,13**] could dircctly observe only one magnesium ion
and a partial spermine molecule among over 150 water
molecules associated with the Dickerson dodecamer
(NDB entry BDL.084). Similarly, the 76 phosphates of the
highest resolution tRNA structure (2.5 A, NDB entry
trnalO [14,15]) are predominantdy un-neutralized. T'he
tRNA structure contains only four magnesium ions and no
monovalent cations. This apparent charge imbalance per-
sists even in complexes of nucleic acids with cationic
proteins. In the nucleosome core particle (2.8 A. NDB
entry pd0001 [16]), 290 phosphate groups are compensat-
ed by only 162 cationic amino acids and six divalent
cations. 'T'his count undcrestimates the imbalance by
ignoring anionic amino acid residues.

Found cations

Where are the monovalent cations that surround DNA and
RNA? Williams and co-workers [12°°,13%%] have proposed
a hybrid-solvent model that is consistent with the ncar
invisibility of monovalent cations to X-ray diffraction. In
this model, solvent sites that were previously characterized
as pure water are, in fact, hybrids and are parcially occupied
by monovalent cations. A hybrid 1s composed of several
kinds of atoms that occupy symmetry-equivalent sites.
Solvent sites surrounding DNA are occupied by water mol-
ceules ar some locations in the crystal, but arc occupied by
monovalent cations at locations that are equivalent by sym-
metry, The cation occupancy of a hybrid-solvent site is
essentially equivalent to the local stoichiometric ratio of
monovalent cations to water molecules. That ratio aver-
ages less than 10% for solvent sites in DNA crvstals,

We obtain this estimate of the stoichiometric ratio of water
to monovalent cations using two independent back-of-the-
envelope calculations. First, assume that the unit cell of a
dodecamer crystal contains one monovalent cation for
cvery phosphate (1.5 x 10722 mol phosphate per unit cell)
and that half the volume of the unit cell
(V/2=3.3x10-2 L) is excluded by DNA and the other
half contains saline solution. If so, the monovalent cation
concentration is 4 M in 55 M water. This stoichiometric
ratio suggests, if the cations are evenly distributed, 7%
fractional occupancy of hybrid-solvent sites by monovalent
cations. Crystals contain other cations, such as magnesium
and spermine, however, which compete with monovalent
cations for entry into the crystal. Therefore, 7% is the max-
imum average monovalent cation occupancy. Second,
polymeric DNA in solution may not provide an ideal
model for cation distribution around oligonucleotides,
especially in crystals. Using polymeric DNA in solution as
a guide, however, the concentration of monovalent cations
adjacent to DNA is estimated to be 1M, while water is
55 M, suggesting 2% fractional occupancy.



The overwhelming occupancies of water over monovalent
cations in hybrid-solvent sites present difficult analytical
challenges during X-ray structure determination. The
X-ray scattering characteristics (electron density) of a
hybrid are weighted by the fractional occupancices. 1f the
coordinating ligands are pliable, the coordination geometry
will also show hybrid characteristics, possibly manifested
by high thermal factors. In fact, the relatively high thermal
factors of DNA phosphate groups at low temperature [17]
are enurely consistent with the hybrid-solvent model.
Lven in the absence of hybrid smearing, locating monova-
lent canons from geometric considerations 1s challenging
because water molecules and monovalent cations, unlike
divalent cations, both have pliable and unpredictable coor-
dination geometries. The identification of sodium is most
problematic because sodium ions and water molecules
carry the same number of electrons, giving electron densi-
tv peaks with similar volumes.

Structural versus solution studies

T'he convergence of structural and solution models would
add predictive power to both approaches. Polyelectrolyte
solution models, in which monovalent and divalent cations
are distributed within delocalized ‘atmospheres’ [18], are
consistent with much DNA physical chemistry. Structural
models, in contrast, naturally focus on more ordered com-
ponents, in part because delocalized systems are refractory
to structural analysis.

In purely polvelectiolyte solution models, cation distributions
around DNA are described by sequence-independent radial
functions. Concentration falls oft’ with increasing distance
from the helical axis (see the top of Figure 1). Cations remain
tully hydrated and do not bind with long lifetimes at specific
sites [19,20°%). "The structure-based hybrid-solvent model
similarly suggests a distribution of monovalent cation density
and a predominance of full hydration. 'The cations are largely
delocalized and exhibit irregularity, suggesting nonsite bind-
ing. Yet, the strict aversion of fullv hydrated magnesium 1ons
for DNA amino groups [13**] indicates that a radial cation
atmosphere of mobile, fully hydrated cations, whether mono-
valent or divalent, would be perturbed by sequence.
Additional deviations from purelv polyelectrolyte models are
suggested by the partial dehydration and site binding of a
fraction of the monovalent cations, especially within the
minor groove of Al-tracts (see below). An unanticipated
decoupling of dehydration and site binding is suggested by
the presence of a restrictive geometric monolayer of solvent
sites within the minor groove of A'l*tracts [13°°]. Monovalent
cations would partially dehydrate upon entry into the minor
groove, but would retain two-dimensional mobility.

The influences of the functional groups of DNA bases on
cation distributions imply that systems of peaks and
troughs would be superimposed on the radial function
describing cation density in solution. The cation peaks and
troughs would effectively be static, even though the popu-
lation that comprises them is highly mobile, because the
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A system of sequence-induced peaks and troughs of cation density
superimposed on the radial polyelectrolyte distribution surrounding
DNA. DNA bends around peaks of cation density and bends away
from troughs. The concentration of cationic charge in the counterion
atmosphere is indicated by a shade of gray, with black indicating
regions of greatest concentration.

motions of water molecules [21] and cations [22] are rapid
on the timescale of DNA motions [23-25].

Monovalent cations in the minor groove

of AT-tracts

Williams and co-workers [12°%,13°*] have recently attempted
to use X-ray diffraction both to determine cation occupancies
and to search for peaks and troughs of cation density around
DNA. The minor groove of AT-tract DNA was a reasonable
place to anticipate peaks of monovalent cation density. Many
vears ago, Rich and co-workers [26] used single-crystal dif-
fraction to identify a sodium ion positioned near the floor of
the abbreviated minor groove of a dinucleotide duplex. The
relevance of that structure was discounted during initial
interpretations of the Dickerson dodecamer. ‘[*hose interpre-
rations described a purely aqueous ‘spine of hydration’ in the
Al-tract minor groove [27); however, Bartencv er @/ [28]
inferred that cestum localizes in AT tract minor grooves using
fiber diffraction of polymeric DNA. Recently determined
high-resolution single crystal diffraction data for several salts
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Figure 2
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View into the minor groove of the potassium form of
[dCGCGAATTCGCG],, showing the coordination geometry of the
5" ApT 3’ step. DNA atoms are shaded by type, with nitrogen (dark) >
oxygen > carbon > phosphorous (light). The ligands of the
water—cation hybrid, which are represented as spheres, are two 04’
atoms, two carbonyl oxygen atams (02) and two occupants of the
secondary hydration layer (S). The sphere representing the
water—cation hybrid is larger and darker than the other six spheres.
Distances indicated are in angstroms, Adapted from [13¢°].

of the Dickerson dodecamer led to a re-interpretation, sug-
gesting significant occupancy by either sodium [12°°] or
potassium [13**] in the minor groove. Work by the same
group using rubidium and cesium has confirmed monovalent
occupancy within the minor groove (LD Williams e /.,
unpublished data). The fiber and crystal data are supported
by results obtained on DNA mn solution. Hud ¢ 4/ [29**]
demonstrated that ammonium binds preferentially in A'l-
tract minor grooves. These authors established isotopically
labeled ammonium as an excellent NMR probe for monova-
lent alkahi ions in both B-DNA and quadruplex DNA [30].
The combined experimental results are consistent with a
series of nanosecond-level molecular dynamics simulations,
carnied out by Young and Bevendge [31*°,32°%], of DNA frag-
ments under varnious salt conditions. In those molecular
dynamics simulations, monovalent cations bind preferential-
ly in A'l*tract minor grooves.

In summary, 1998 was a water-shed year, during which it
became clear that the ‘spine of hydration’ in AT-tracts can
have significant monovalent cation occupancy. The six-
coordinate site at 5° Ap'l" 3" steps forms an especially good
location for hard monovalent cations, with four oxygen
atoms from DNA and two oxygen atoms from water mole-
cules as ligands (Figure 2). The ligands localize the cation
in a region that is recognized as having unusually high
electronegative potential [31°%,32°°.33,34]. The coordina-
tion distances at the ApT step are slightly greater than
expected for a potassium ion, but are greater in number
and, in some cascs, are shorter than would be expected for
a water molecule. Indeed, the ApT binding site meets the
monovalent binding criteria of Draper and Misra [35°°].
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Schematic representation of electrostatic collapse, showing equivalent
effects of cation localization, phosphate neutralization and anion
localization. The schematic is intended to indicate the covalent
attachment of cations or anions to DNA. Only force vectors between
nearest neighbors are indicated.

Cation density

Peaks imply troughs. The observation of high monovalent
cation density in the minor groove of AT-tracts suggests
that cation density is depleted elsewhere. The positions
and amplitudes of peaks and troughs of monovalent cation
occupancy would depend on numerous factors: DNA coor-
dination geometries and electronegative potentials, as
modulated by sequence and conformation; cation size and
dehydration energetics; and the concentrations of the com-
peting multivalent cations, polyamines, minor-groove
binders, proteins and so on.

Electrostatic collapse

It is reasonable to propose a model in which nucleic acids
are deformed by uncven cation density (see the bottom
of Figure 1) within the counterion atmosphere. The
deformation can be global, as in axial bending, and local,
as in groove-width variation. One mechanism, originally
proposed by Mirzabekov, Rich and co-workers [36,37] to
explain spontaneous DNA bending around proteins, is
known as ‘electrostatic collapse’. The model is support-
ed by the elegant experiments of Maher and co-workers
[6,38-40], who demonstrated that the electronic effects
of protein binding can be isolated from other effects by
the construction of ‘phantom proteins’. Maher and col-
leagues [6,38-40] have shown that covalently localized
cations and ncutralized phosphates can bend DNA in
the absence of proteins.
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The electrostatic collapse phenomenon has been subdivid-
ed into various classes, although a unifying view is obtained
by considering the summation of local coulombic force vec-
tors. A schematic diagram showing how axial bends resule
from phosphate neutralization, cation localization or anion
localization is shown in Figure 3. Electrostatic collapse is
consistent with polyelectrolyte models. Polyelectrolyte
models predict that one can induce a net uptake or release
of cationic counterions by altering the anionic charge den-
sity of DNA [18]. The electrostatic collapse model states
the converse; that one can locally change the anionic charge
density (i.e. bend the DNA) by externally modulating the
local concentration of cationic counterions.

Experimentally, the degree and direction of DNA bending
can be controlled by systematically varying the location
and amplitude, from positive to negative, of the peaks of
cationi¢ density around DNA. "This variation was accom-
plished by Strauss-Soukup and Maher [41°°] using
appropriate substitutions of cationic or anionic residues in
the transcription factor GCN4 bound to DNA. Gold and
co-workers [42,43] are developing methodologies to con-
trol the site of the localization of covalently attached
charge on DNA. In the final analysis, one must account for
the distributions of mobile counterions in order to achieve
a quantitative and fully reliable model of DNA bending by
‘phantom proteins’,

The issue of DNA deformation around mobile cations
cannot be fully resolved by experiments in which the
locations of charges are fixed by either protein or cova-
lent attachment. An explicit treatment of the dynamical
characteristics of divalent cations is described by
Rouzina and Bloomfield [20**]. They propose that DNA
is bent by short-range electrostatic interactions between
phosphate groups and mobile divalent cations. An analo-
gous conclusion was obtained by Stigter [34]), who used a
fixed dielectric and concluded that electrostatic forces
act over a relatively long range -— up to two helical turns.
The locations of the peaks of monovalent cation density
within the minor groove of Al-tract DNA predict that
the bending direction is towards the minor groove. A-
tract DNA does indeed bend towards the minor groove
in solution [44]. The locations of the peaks of monova-
lent cation density predict that AT-tract DNA will have a
narrow minor groove. A-tract DNA does indeed have a
narrow minor groove [45,46]. We believe that essentially
unequivocal evidence establishing the importance of
cation density in determining groove width is provided
by Feigon and co-workers [29°*] with their ammonium
probe. They demonstrate that where the time-averaged
density of monovalent cations in the minor groove is
greatest, the groove is narrowest.

Competition between monovalent and
divalent cations

Divalent cations compete with monovalent cations in
solution [47-49], but do not nccessarily bind preferen-

Figure 4
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Cation-r interactions in the major groove of distorted B-DNA. Dashed
lines indicate cation—m interactions between DNA bases and
Mg(OH,)g2*. The DNA is in stick representation. The bases that
engage in cation—7 interactions are cytosines (blue). Mg(OH,)¢2* is
represented by spheres, with the radius of Mg2+ (yellow) greater than
that of first shell water oxygens (red). (a) A portion of DNA dodecamer
duplex d(CGCGAATTCGCG). (b} A portion of decamer duplex
d(CGATCGATCG). The asterisk indicates the location of a bend in the
helical axis. Adapted from [57°*].

tially at the same sites [29°°,50°*]. Differences in mono-
valent and divalent binding site preferences can be
inferred by comparing dodecamer structures in crystals
grown from solutions of relatively low [12°%,13**] and
high [51°] concentrations of magnesium. When the occu-
pancies of divalent cations around DNA increase, the
occupancies of monovalent cations decrease. Divalent
cations outside the minor groove displace monovalent
cations from within the minor groove.
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Surprising roles for monovalent cations

The observation of specific interactions between DNA
and monovalent cations has broad implications. Specific
cation—DNA intcractions appear to mediate recognition
processes. Ladbury and co-workers [52°°] observed that
monovalent cations are recruited in order to stabilize a
specific protein—IDNA complex. They propose that
cations mediate specific interactions between the TATA-
box-binding protein and its DNA recognition sequence
in a hyperchermophilic organism that lives at high salt
concentrations. Doudna and co-workers [53*°] observed a
specific binding site for monovalent metal ions within a
catalytic RNA. Similarly, Chaires and co-workers have
calorimetrically detected modest, but real cffects of
monovalent ion identity on the affinity of daunomycin for
DNA (] Chaires ez a/., personal communication). T'hese
calorimetric data are consistent with the obscrvations of
Wang ¢7 /. |54], who reported a sodium chelation site
adjacent guanine

formed by daunomycin and an

(reviewed in [55]).

Roles for divalent cations in condensation
Clark o7 af. (GR Clark, C] Squire, RF Martin, ] White,
personal communication) have developed a powerful
crystalline model for DNA condensation /7 vive. Thev
performed a controlled and stepwise dehydration of
DNA dodecamer crystals and observed increasing crys-
talline order and compaction. The most dehydrated
crystals exist as infinite polymeric networks, in which
adjacent duplexes are cross-linked by coordinate bonds
through partially dehvdrated magnesium jons. The
importance of specific cation interactions in DNA con-
densation 1s reinforced by the observation of Subirana
and co-workers [56] that changing from magnesium to
calcium counterions switches the packing mode in dode-
camer cryseals.

Roles for divalent cations in base unstacking
Williams and co-workers [57°°] proposed that inorganie
cations cngage in cation—x interactions with the bases of
DNA and RNA. FFor example, hydruted magnesium ions
locared in the major groove of B-DNA appear to partial-
Iv pull out cyrosine bases from the helical stack,
exposing T systems to positive charge (Figure 4). This
proposed unstacking function for inorganic cations is a
rediscovery of a phenomenon reported over 30 years ago
by Mildvan and co-workers [58], who found cvidence
thut Mn(H,0).2+ intercalates in Apll, separating the
bases by over 7.0 A. Williams and co-workers [57**] sug-
gest that cation—n interactions contribute to the stability
of a wide range of RNA structures, including the anri-
codon arm of yeast tRNAVPYe und che Tetrahymena group |
intron. ‘This unstacking function opposes generally
accepted roles for cations in stabilizing DNA and RNA
duplexes and higher assemblics, and suggests a number
of new mechanistic roles for cations in DNA bending.
DNA-protein recognition, base flipping and RNA fold-
ing and catalysis.

Conclusions

The influences of cations on nucleic acid structure are
multifaceted and subtle. Cations can simultaneously stabi-
lize and unstack. Cations can cause static bends from
dynamical states, With the increased availability of high
flux X-ray sources and sensitive detectors, and a newfound
focus among the structural community, we anticipate the
day when all the cations will be found.
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