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DNA A-tracts are associated with narrow minor groo¥esaxial 7.0
bends!~® high propeller twists, and characteristic hydration ] A,T,-high Mg2*
motifs8~11 In addition, the minor grooves of A-tracts localize 2 Mg?/Rb1.5
monovalent cation®-17 It was surprising that dodecamer duplexes < 6-0 3 Mg?*/Rb*-1.2 AsTs (low res)
with extended A-tracts, such as [d(CGCAAATTTGC&)here % 5 Mg?*/Na® R
called AsT3, appeared in fundamental ways to differ from duplexes s 5.0 . monovalent-minus \
with shorter A-tracts, such as [d(CGCGAATTCGCg}alled here P L N\ W P
A,T,. The hydration, minor groove width, and baggse hydrogen 3
bonds of AT; differ from those of AT,. A3T3 has been character- 3 4.0
ized in an unliganded form, by Ri¢hand Neidle!® and in 5
complexes with minor groove-binding drugs, such as distam§cin E30
or berenil?® The highest resolution unligandeds® structure, < .’f 9
solved to 2.2 A resolutiok? was interpreted to indicate disordered AgT3 (high res) M v
minor groove water molecules, which interact primarily with either 20 . Na : K", Gs .
one or the other DNA strands but not with both. The minor groove (4)- (5)- (6)- (7)- (8)- (9)-
of AsT; appeared to be relatively wide. FinallysPs structures (21) (20) (19) (18) (17) (16)
appeared to contain basbase hydrogen bonds, in addition to those Base Pair

proposed by Watson and Crick, with bifurcated hydrogen bonds Figure 1. Minor groove widths of AT, and AgTs structures. The groove

P ~ ; _width profile of the high-resolution &3 structure described here is given
within the A-tract major groove, between bases that are not base by a solid black line. The previous lower-resolutionTA (BDLO38)

paired!®2t ) . . ) structure is in dashed black. Groove widths of three structures obtained
The archetypical A-tract, contained within the “Dickerson from low [Mg?*] are shown in red [dotted line; sodium (BDLUBY dashed

Dodecamer” (AT,), has a narrow minor groove and an extended line; potassium (BD00G9), dot-dashed line; cesium (BDOOZpforms].

; Groove widths of three structures obtained from high fMare shown in
system of geometrically arranged water molectiiés,some of blue [dotted line; magnesium/sodium (BDO0G®7 long-dashed line;

which are long-lived in solutic_)ﬁz.v23The primary hydration_|ayerv magnesium/rubidium-1.2 (BD003%, short-dashed line; magnesium/ru-
on the floor of the A-tract minor groove of A, forms bridges bidium-1.5 (BD0013Y) forms]. The monovalent-minus structure is solid
between DNA strands, linking N3 (A) and O2 (T) atoms from green (BDOOO®). Minor groove width profiles were calculated with the

opposing strands. Additional layers of water molecules assemble Program CURVES (version 5.38jwhich provides a continuous description
of groove geometry. Coordinates were obtained from the Nucleic Acid

atop the primary hydration layer. The hydrogen bonds between theDatabaséf3 In some structures, the DNA is covalently modified.
bases of AT, conform to the scheme proposed by Watson and

Crick.

To explore the differences and possibly reconcile the discrep- Structures of AT, more closely than that of the previous low-
ancies between A, and ATs, a high-resolution AT structure resolution ATj structure. )
(1.5 A resolution,>10 000 reflections) is described here, represent- It appearszt6hzzt Li recapitulates a monovalent-minus conforma-
ing a significant increase in data quality in comparison with that 0N of DNA22The minor groove profile of the high-resolution
in previous AT structures (20003000 reflections). Electron ~ AsTs structure most closely resembles that of a modified-A
density maps, along with information on data collection and structure crysta}lllzed in the presence ofMganq the absence of
refinement, minor groove hydration, spermine interactions, and a menovalent cations. For example, the A-tract minor groovefibA
superimposition of ATs onto AT, are contained in the Supporting IS Widest at base pair 6 (4.0 A), where §t 1 A wider than our
Information. Crystals were grown from a solution containing high-resolution structures of&,. These differences may arise from
spermine, magnesium (Mg, and lithium (Li). differences in the cationic environment. The A-tract minor groove

The profile of the minor groove width of As at high resolution @S previously been shown to localize monovalent catioris:=°
differs significantly from that of the previous low-resolution ™ In the structure presented here; Was the only monovalent cation
structure (Figure 1). At high resolution, the A-tract minor groove N the crystallization solution. L with relatively high charge
is narrow, with the most acute narrowing at base pait® (where density, exhibits coordination chemistry that is significantly different
the width is 2.8 A). By contrast, the groove width of the lower- from that of the group I ions (Na K™, and Rb) that are commonly
resolution structure is wider and is relatively constant throughout Presentin DNA crystallization solutions. These ions dehydrate more
the A-tract. The minor groove width profile of s at high readily than Li- or Mg?", allowing more facile interaction with

resolution is seen to generally resemble those of high-resolution 19ands on the floors of the grooves. It would not appear likely
that Li™ would dehydrate and localize within the narrow minor

T Atomic coordinates and structure factors have been deposited in the NDB (entry groove. No I__I*' lons were Obse__rved in the eleCtron_ density maps.
code BD0067 and PDB (entry code 1S2R). However, failure to observe tiions should not be interpreted as
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evidence for a lack of Li localization. Crystallographic determi-  that it could not be observed in the electron density maps. This
nation of Li* is problematic due to the very weak scattering of hypothesis may explain the unusual hydration and the width of the
X-rays. minor groove.

The minor groove hydration of high-resolution is consistent
with observations from high-resolution structures offAbut not
with those of the lower-resolution /3 structure. The high-
resolution ATz minor groove contains ordered solvent sites that
are readily fit to a monolayer of water molecules. Rising from the  Supporting Information Available: Electron density maps, along
floor of the groove are primary, secondary, tertiary, and quaternary with information on data collection and refinement, minor groove
layersi®11 The primary layer forms bridges between the strands. hydration, spermine interactions, and a superimposition £f;An
Each internal primary site is coordinated by at least one, but A:T.. This material is available free of charge via the Internet at http://
commonly two, O4atom(s) and one O2 (T) atom and one N3 (A) pubs.acs.org.
atom. The single exception is the central site at the ApT step, which
is coordinated by two O2 (T) atoms but not an N3 (A) atom. Two References

Acknowledgment. This work was funded by the National
Science Foundation (MCB-9976498). The authors thank Drs. Nick
Hud and Martin Egli for helpful discussions.

intact hexagon hydration moti&!tare observed. The primary and (1) Wing, R.; Drew, H.; Takano, T.; Broka, C.; Takana, S.; ltakura, K.;
tapmi FReH Dickerson, R. ENature 198Q 287, 755-758.
secondary layers correspond to the “spine of hydration™ The ) Jiclcel™l "6 ipanov, A. A.: Skuratovskii, I. Yature 1987, 325
hydration pattern of AT3 is extended relative to that of /A, to 821-823.
; 1 i ; i (3) Burkhoff, A. M.; Tullius, T. D.Cell 1987, 48, 935-943.
include seyen, rathe_r than five, sites in the p”mary layer' . (4) Marini, J. C.; Levene, S. D.; Crothers, D. M.; Englund, PPToc. Natl.
Two partial spermine molecules are observed in the G-tract major Acad. Sci. U.S.A1982 79, 76647668.

groove of AST?” one at each end of the dup|exl Previous h|gh_ (5) H_agerman, P. Proc. Natl. Acad. S'Ci. U.S.A984 81, 4632-4636.
(6) Diekmann, S.; Wang, J. Q. Mol. Biol. 1985 186, 1—11.
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